14 resultados para large-small scale (LSS) equations of turbulence

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple sampling device is described which produces thin (1 mm) sections of sediment cores. The sampler has been tested on fine sand of an intertidal sandflat and used to study the vertical distribution, over part of a tidal cycle in August, 1981, of migrating algae in the surface 20 mm of sand. Two species of Diplonies and one of Navicula showed marked changes in vertical distribution as the sandflat was flooded, but the distribution of bacteria in the sime samples did not show any change with tidal state. Spatial separation of different species of harpacticoid oppepods within the surface 20 mm of sand has also been demonstrated using this sampler, and the results suggest that different species may occupy particular fine-scale spatial niches within the sand column. The depth separation of nematode species was less well defined, except for two species with apparently the same feeding mode which were isolated from one another vertically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single tidal cycle survey in a Lagrangian reference frame was conducted in autumn 2010 to evaluate the impact of short-term, episodic and enhanced turbulent mixing on large chain-forming phytoplankton. Observations of turbulence using a free-falling microstructure profiler were undertaken, along with near-simultaneous profiles with an in-line digital holographic camera at station L4 (50° 15′ N 4° 13′ W, depth 50 m) in the Western English Channel. Profiles from each instrument were collected hourly whilst following a drogued drifter. Results from an ADCP attached to the drifter showed pronounced vertical shear, indicating that the water column structure consisted of two layers, restricting interpretation of the Lagrangian experiment to the upper ~ 25 m. Atmospheric conditions deteriorated during the mid-point of the survey, resulting in values of turbulent dissipation reaching a maximum of 10− 4 W kg− 1 toward the surface in the upper 10 m. Chain-forming phytoplankton > 200 μm were counted using the data from the holographic camera for the two periods, before and after the enhanced mixing event. As mixing increased phytoplankton underwent chain breakage, were dispersed by advection through their removal from the upper to lower layer and subjected to aggregation with other suspended material. Depth averaged counts of phytoplankton were reduced from a maximum of around 2050 L− 1 before the increased turbulence, to 1070 L− 1 after, with each of these mechanisms contributing to this reduction. These results demonstrate the sensitivity of phytoplantkon populations to moderate increases in turbulent activity, yielding consequences for accurate forecasting of the role played by phytoplankton in climate studies and also for the ecosystem in general in their role as primary producers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While a few North Atlantic cod stocks are stable, none have increased and many have declined in recent years. Although overfishing is the main cause of most observed declines, this study shows that in some regions, climate by its influence on plankton may exert a strong control on cod stocks, complicating the management of this species that often assumes a constant carrying capacity. First, we investigate the likely drivers of changes in the cod stock in the North Sea by evaluating the potential relationships between climate, plankton and cod. We do this by deriving a Plankton Index that reflects the quality and quantity of plankton food available for larval cod. We show that this Plankton Index explains 46.24% of the total variance in cod recruitment and 68.89% of the variance in total cod biomass. Because the effects of climate act predominantly through plankton during the larval stage of cod development, our results indicate a pronounced sensitivity of cod stocks to climate at the warmer, southern edge of their distribution, for example in the North Sea. Our analyses also reveal for the first time, that at a large basin scale, the abundance of Calanus finmarchicus is associated with a high probability of cod occurrence, whereas the genus Pseudocalanus appears less important. Ecosystem-based fisheries management (EBFM) generally considers the effect of fishing on the ecosystem and not the effect of climate-induced changes in the ecosystem state for the living resources. These results suggest that EBFM must consider the position of a stock within its ecological niche, the direct effects of climate and the influence of climate on the trophodynamics of the ecosystem.