9 resultados para landscape heritage
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Executive Summary 1. The Marine Life Information Network (MarLIN) has been developed since 1998. Defra funding has supported a core part of its work, the Biology and Sensitivity Key Information Sub-programme. This report relates to Biology and Sensitivity work for the period 2001-2004. 2. MarLIN Biology and Sensitivity research takes information on the biology of species to identify the likely effects of changing environmental conditions linked to human activities on those species. In turn, species that are key functional, key structural, dominant, or characteristic in a biotope (the habitat and its associated species) are used to identify biotope sensitivity. Results are displayed over the World Wide Web and can be accessed via a range of search tools that make the information of relevance to environmental management. 3. The first Defra contract enabled the development of criteria and methods of research, database storage methods and the research of a wide range of species. A contract from English Nature and Scottish Natural Heritage enabled biotopes relevant to marine SACs to be researched. 4. Defra funding in 2001-2004 has especially enabled recent developments to be targeted for research. Those developments included the identification of threatened and declining species by the OSPAR Biodiversity Committee, the development of a new approach to defining sensitivity (part of the Review of Marine Nature Conservation), and the opportunity to use Geographical Information Systems (GIS) more effectively to link survey data to MarLIN assessments of sensitivity. 5. The MarLIN database has been developed to provide a resource to 'pick-and-mix' information depending on the questions being asked. Using GIS, survey data that provides locations for species and biotopes has been linked to information researched by MarLIN to map the likely sensitivity of an area to a specified factor. Projects undertaken for the Irish Sea pilot (marine landscapes), in collaboration with CEFAS (fishing impacts) and with the Countryside Council for Wales (oil spill response) have demonstrated the application of MarLIN information linked to survey data in answering, through maps, questions about likely impacts of human activities on seabed ecosystems. 6. GIS applications that use MarLIN sensitivity information give meaningful results when linked to localized and detailed survey information (lists of species and biotopes as point source or mapped extents). However, broad landscape units require further interpretation. 7. A new mapping tool (SEABED map) has been developed to display data on species distributions and survey data according to search terms that might be used by an environmental manager. 8. MarLIN outputs are best viewed on the Web site where the most up-to-date information from live databases is available. The MarLIN Web site receives about 1600 visits a day. 9. The MarLIN approach to assessing sensitivity and its application to environmental management were presented in papers at three international conferences during the current contract and a 'touchstone' paper is to be published in the peer-reviewed journal Hydrobiologia. The utility of MarLIN information for environmental managers, amongst other sorts of information, has been described in an article in Marine Pollution Bulletin. 10. MarLIN information is being used to inform the identification of potential indicator species for implementation of the Water Framework Directive including initiatives by ICES. 11. Non-Defra funding streams are supporting the updating of reviews and increasing the amount of peer review undertaken; both of which are important to the maintenance of the resource. However, whilst MarLIN information is sufficiently wide ranging to be used in an 'operational' way for marine environmental protection and management, new initiatives and the new biotopes classification have introduced additional species and biotopes that will need to be researched in the future. 12. By the end of the contract, the Biology and Sensitivity Key Information database contained full Key Information reviews on 152 priority species and 117 priority biotopes, together with basic information on 412 species; a total of 564 marine benthic species.
Resumo:
Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of ‘model’ sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.