9 resultados para landings

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skates (Rajidae) have been commercially exploited in Europe for hundreds of years with some species’ abundances declining dramatically during the twentieth century. In 2009 it became “prohibited for EU vessels to target, retain, tranship or land” certain species in some ICES areas, including the critically endangered common skate and the endangered white skate. To examine compliance with skate bans the official UK landings data for 2011–2014 were analysed. Surprisingly, it was found that after the ban prohibited species were still reported landed in UK ports, including 9.6 t of common skate during 2011–2014. The majority of reported landings of common and white skate were from northern UK waters and landed into northern UK ports. Although past landings could not be validated as being actual prohibited species, the landings’ patterns found reflect known abundance distributions that suggest actual landings were made, rather than sporadic occurrence across ports that would be evident if landings were solely due to systematic misidentification or data entry errors. Nevertheless, misreporting and data entry errors could not be discounted as factors contributing to the recorded landings of prohibited species. These findings raise questions about the efficacy of current systems to police skate landings to ensure prohibited species remain protected. By identifying UK ports with the highest apparent landings of prohibited species and those still landing species grouped as'skates and rays’, these results may aid authorities in allocating limited resources more effectively to reduce landings, misreporting and data errors of prohibited species, and increase species-specific landing compliance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skates (Rajidae) have been commercially exploited in Europe for hundreds of years with some species’ abundances declining dramatically during the twentieth century. In 2009 it became “prohibited for EU vessels to target, retain, tranship or land” certain species in some ICES areas, including the critically endangered common skate and the endangered white skate. To examine compliance with skate bans the official UK landings data for 2011–2014 were analysed. Surprisingly, it was found that after the ban prohibited species were still reported landed in UK ports, including 9.6 t of common skate during 2011–2014. The majority of reported landings of common and white skate were from northern UK waters and landed into northern UK ports. Although past landings could not be validated as being actual prohibited species, the landings’ patterns found reflect known abundance distributions that suggest actual landings were made, rather than sporadic occurrence across ports that would be evident if landings were solely due to systematic misidentification or data entry errors. Nevertheless, misreporting and data entry errors could not be discounted as factors contributing to the recorded landings of prohibited species. These findings raise questions about the efficacy of current systems to police skate landings to ensure prohibited species remain protected. By identifying UK ports with the highest apparent landings of prohibited species and those still landing species grouped as'skates and rays’, these results may aid authorities in allocating limited resources more effectively to reduce landings, misreporting and data errors of prohibited species, and increase species-specific landing compliance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Abundant mid-trophic pelagic fish often play a central role in marine ecosystems, both as links between zooplankton and top predators and as important fishery targets. In the North Sea, the lesser sandeel occupies this position, being the main prey of many bird, mammal and fish predators and the target of a major industrial fishery. However, since 2003, sandeel landings have decreased by > 50%, and many sandeel-dependent seabirds experienced breeding failures in 2004. 2. Despite the major economic implications, current understanding of the regulation of key constituents of this ecosystem is poor. Sandeel abundance may be regulated 'bottom-up' by food abundance, often thought to be under climatic control, or 'top-down' by natural or fishery predation. We tested predictions from these two hypotheses by combining unique long-term data sets (1973–2003) on seabird breeding productivity from the Isle of May, SE Scotland, and plankton and fish larvae from the Continuous Plankton Recorder survey. We also tested whether seabird breeding productivity was more tightly linked to sandeel biomass or quality (size) of individual fish. 3. The biomass of larval sandeels increased two- to threefold over the study period and was positively associated with proxies of the abundance of their plankton prey. Breeding productivity of four seabirds bringing multiple prey items to their offspring was positively related to sandeel larval biomass with a 1-year lag, indicating dependence on 1-year-old fish, but in one species bringing individual fish it was strongly associated with the size of adult sandeels. 4. These links are consistent with bottom-up ecosystem regulation and, with evidence from previous studies, indicate how climate-driven changes in plankton communities can affect top predators and potentially human fisheries through the dynamics of key mid-trophic fish. However, the failing recruitment to adult sandeel stocks and the exceptionally low seabird breeding productivity in 2004 were not associated with low sandeel larval biomass in 2003, so other mechanisms (e.g. predation, lack of suitable food after metamorphosis) must have been important in this case. Understanding ecosystem regulation is extremely important for predicting the fate of keystone species, such as sandeels, and their predators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change accentuates the need for knowing how temperature impacts the life history and productivity of economically and ecologically important species of fish. We examine the influence of temperature on the timing of the spawning and migrations of North Sea Mackerel using data from larvae CPR surveys, egg surveys and commercial landings from Danish coastal fisheries in the North Sea, Skagerrak, Kattegat and inner Danish waters. The three independent sources of data all show that there is a significant relationship between the timing of spawning and sea surface temperature. Large mackerel are shown to arrive at the feeding areas before and leave later than small mackerel and the sequential appearance of mackerel in each of the feeding areas studied supports the anecdotal evidence for an eastward post-spawning migration. Occasional commercial catches taken in winter in the Sound N, Kattegat and Skagerrak together with catches in the first quarter IBTS survey furthermore indicate some overwintering here. Significant relationships between temperature and North Sea mackerel spawning and migration have not been documented before. The results have implications for mackerel resource management and monitoring. An increase in temperature is likely to affect the timing and magnitude of the growth, recruitment and migration of North Sea mackerel with subsequent impacts on its sustainable exploitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the Food and Agriculture Organization’s (FAO) Mediterranean capture fisheries production dataset in conjunction with global and Mediterranean sea surface temperatures, we investigated trends in fisheries landings and landings per unit of effort of commercially important marine organisms, in relation to temperature oscillations. In addition to the overall warming trend, a temperature shift was detected in the Mediterranean Sea in the late 1990s. Fisheries landings fluctuations were examined for the most abundant commercial species (59 species) and showed significant year-to-year correlations with temperature for nearly 60 % of the cases. From these, the majority (~70 %) were negatively related and showed a reduction of 44 % on average. Increasing trends were found, mainly in the landings of species with short life spans, which seem to have benefited from the increase in water temperature. Τhe effect of oceanic warming is apparent in most species or groups of species sharing ecological (e.g. small and medium pelagic, demersal fish) or taxonomic (e.g. cephalopods, crustaceans) traits. A landings-per-unit-of-effort (LPUE) proxy, using data from the seven Mediterranean European Union member states, also showed significant correlation with temperature fluctuations for six out of the eight species examined, indicating the persistence of temperature influence on landings when the fishing effect is accounted for. The speed of response of marine landings to the warming of the Mediterranean Sea possibly shows both the sensitivity and the vulnerable state of the fish stocks and indicates that climate should be examined together with fisheries as a factor shaping stock fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nassau grouper, Epinephelus striatus (Bloch, 1792), is an endangered species that has been historically overexploited in numerous fisheries throughout its range in the Caribbean and tropical West Atlantic. Data relating fishery exploitation levels to stock abundance of the species are deficient, and protective regulations for the Nassau grouper are yet to be implemented in the Turks and Caicos Islands (TCI). The goal of this study was to conduct a stock assessment and evaluate the exploitation status of the Nassau grouper in the TCI. Materials and methods. Calibrated length cohort analysis was applied to published fisheries data on Nassau grouper landings in the TCI. The total lengths of Nassau groupers among the catches of spearfishers, lobster trappers, and deep sea fishers on the island of South Caicos during 2006 and 2008 were used with estimates of growth, natural mortality, and total annual landings to derive exploitation benchmarks. Results. The TCI stock experienced low to moderate fishing mortality (0.28, 0.18) and exploitation rates (0.49, 0.38) during the period of the study (2006, 2008). However, 21.2%-64.4% of all landings were reproductively immature. Spearfishing appeared to contribute most to fishing mortality relative to the use of lobster traps or hydraulic reels along bank drop-offs. Conclusion. In comparison with available fisheries data for the wider Caribbean, the results reveal the TCI as one of the remaining sites, in addition to the Bahamas, with a substantial Nassau grouper stock. In light of increasing development and tourism in the TCI, continued monitoring is essential to maintain sustainable harvesting practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Ecological niche modelling can provide valuable insight into species' environmental preferences and aid the identification of key habitats for populations of conservation concern. Here, we integrate biologging, satellite remote-sensing and ensemble ecological niche models (EENMs) to identify predictable foraging habitats for a globally important population of the grey-headed albatross (GHA) Thalassarche chrysostoma. Location: Bird Island, South Georgia; Southern Atlantic Ocean. Methods: GPS and geolocation-immersion loggers were used to track at-sea movements and activity patterns of GHA over two breeding seasons (n = 55; brood-guard). Immersion frequency (landings per 10-min interval) was used to define foraging events. EENM combining Generalized Additive Models (GAM), MaxEnt, Random Forest (RF) and Boosted Regression Trees (BRT) identified the biophysical conditions characterizing the locations of foraging events, using time-matched oceanographic predictors (Sea Surface Temperature, SST; chlorophyll a, chl-a; thermal front frequency, TFreq; depth). Model performance was assessed through iterative cross-validation and extrapolative performance through cross-validation among years. Results: Predictable foraging habitats identified by EENM spanned neritic (<500 m), shelf break and oceanic waters, coinciding with a set of persistent biophysical conditions characterized by particular thermal ranges (3–8 °C, 12–13 °C), elevated primary productivity (chl-a > 0.5 mg m−3) and frequent manifestation of mesoscale thermal fronts. Our results confirm previous indications that GHA exploit enhanced foraging opportunities associated with frontal systems and objectively identify the APFZ as a region of high foraging habitat suitability. Moreover, at the spatial and temporal scales investigated here, the performance of multi-model ensembles was superior to that of single-algorithm models, and cross-validation among years indicated reasonable extrapolative performance. Main conclusions: EENM techniques are useful for integrating the predictions of several single-algorithm models, reducing potential bias and increasing confidence in predictions. Our analysis highlights the value of EENM for use with movement data in identifying at-sea habitats of wide-ranging marine predators, with clear implications for conservation and management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Ecological niche modelling can provide valuable insight into species' environmental preferences and aid the identification of key habitats for populations of conservation concern. Here, we integrate biologging, satellite remote-sensing and ensemble ecological niche models (EENMs) to identify predictable foraging habitats for a globally important population of the grey-headed albatross (GHA) Thalassarche chrysostoma. Location: Bird Island, South Georgia; Southern Atlantic Ocean. Methods: GPS and geolocation-immersion loggers were used to track at-sea movements and activity patterns of GHA over two breeding seasons (n = 55; brood-guard). Immersion frequency (landings per 10-min interval) was used to define foraging events. EENM combining Generalized Additive Models (GAM), MaxEnt, Random Forest (RF) and Boosted Regression Trees (BRT) identified the biophysical conditions characterizing the locations of foraging events, using time-matched oceanographic predictors (Sea Surface Temperature, SST; chlorophyll a, chl-a; thermal front frequency, TFreq; depth). Model performance was assessed through iterative cross-validation and extrapolative performance through cross-validation among years. Results: Predictable foraging habitats identified by EENM spanned neritic (<500 m), shelf break and oceanic waters, coinciding with a set of persistent biophysical conditions characterized by particular thermal ranges (3–8 °C, 12–13 °C), elevated primary productivity (chl-a > 0.5 mg m−3) and frequent manifestation of mesoscale thermal fronts. Our results confirm previous indications that GHA exploit enhanced foraging opportunities associated with frontal systems and objectively identify the APFZ as a region of high foraging habitat suitability. Moreover, at the spatial and temporal scales investigated here, the performance of multi-model ensembles was superior to that of single-algorithm models, and cross-validation among years indicated reasonable extrapolative performance. Main conclusions: EENM techniques are useful for integrating the predictions of several single-algorithm models, reducing potential bias and increasing confidence in predictions. Our analysis highlights the value of EENM for use with movement data in identifying at-sea habitats of wide-ranging marine predators, with clear implications for conservation and management.