19 resultados para inner shelf of the East China Sea
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Benthic biomass size spectra (BSS) and normalized biomass size spectra were constructed, and benthic secondary production was estimated by a size spectrum equation in the shallow waters in the East China Sea, ranging latitudinally from 40A degrees N to 29A degrees N. The BSS patterns were bimodal, two biomass peaks corresponding to meiofauna and macrofauna, respectively, separated by a trough of low biomass at 8-256 mu g individual dry weight which varied in position with median sediment particle size. The BSS also displayed bimodality within meiofauna size ranges, which in most stations was due to the relative proportions of nematodes and other meiofauna taxa. Re-analysis of data from sites in the UK, South Africa, and Antarctic showed a similar bimodality in the adult species body size distribution within the meiofauna size range. Macrofaunal production estimated by the size spectrum equation was very similar to the results of Brey90 empirical equation. However, these production values were much lower than those calculated by Brey01. Different individual dry-to-wet conversion ratios, temperature deviation, and macrofauna taxonomic composition might be responsible for the between-model differences. The macrofaunal P/B ratios calculated by this equation ranged from 0.3 to 3.4 which were in accordance with values from Northern Hemisphere mid-latitudes. Meiofaunal production estimates will need further empirical support.
Trophic network model of the Northern Adriatic Sea: analysis of an exploited and eutrophic ecosystem
Resumo:
During recent decades anthropogenic activities have dramatically impacted the Black Sea ecosystem. High levels of riverine nutrient input during the 1970s and 1980s caused eutrophic conditions including intense algal blooms resulting in hypoxia and the subsequent collapse of benthic habitats on the northwestern shelf. Intense fishing pressure also depleted stocks of many apex predators, contributing to an increase in planktivorous fish that are now the focus of fishing efforts. Additionally, the Black Sea's ecosystem changed even further with the introduction of exotic species. Economic collapse of the surrounding socialist republics in the early 1990s resulted in decreased nutrient loading which has allowed the Black Sea ecosystem to start to recover, but under rapidly changing economic and political conditions, future recovery is uncertain. In this study we use a multidisciplinary approach to integrate information from socio-economic and ecological systems to model the effects of future development scenarios on the marine environment of the northwestern Black Sea shelf. The Driver–Pressure–State-Impact-Response framework was used to construct conceptual models, explicitly mapping impacts of socio-economic Drivers on the marine ecosystem. Bayesian belief networks (BBNs), a stochastic modelling technique, were used to quantify these causal relationships, operationalise models and assess the effects of alternative development paths on the Black Sea ecosystem. BBNs use probabilistic dependencies as a common metric, allowing the integration of quantitative and qualitative information. Under the Baseline Scenario, recovery of the Black Sea appears tenuous as the exploitation of environmental resources (agriculture, fishing and shipping) increases with continued economic development of post-Soviet countries. This results in the loss of wetlands through drainage and reclamation. Water transparency decreases as phytoplankton bloom and this deterioration in water quality leads to the degradation of coastal plant communities (Cystoseira, seagrass) and also Phyllophora habitat on the shelf. Decomposition of benthic plants results in hypoxia killing flora and fauna associated with these habitats. Ecological pressure from these factors along with constant levels of fishing activity results in target stocks remaining depleted. Of the four Alternative Scenarios, two show improvements on the Baseline ecosystem condition, with improved waste water treatment and reduced fishing pressure, while the other two show a worsening, due to increased natural resource exploitation leading to rapid reversal of any recent ecosystem recovery. From this we conclude that variations in economic policy have significant consequences for the health of the Black Sea, and ecosystem recovery is directly linked to social–economic choices.
Resumo:
Although the Ulleung Basin is an important biological hot spot in East/Japan Sea (hereafter the East Sea), very limited knowledge for seasonal and annual variations in the primary productivity exists. In this study, a recent decadal trend of primary production in the Ulleung Basin was analyzed based on MODIS-derived monthly primary production for a better annual production budget. Based on the MODIS-derived primary production, the mean daily primary productivity was 766.8 mg C m-2 d-1 (SD=+/- 196.7 mg C m-2 d-1) and the annual primary productivity was 280.2 g C m-2 yr-1 (SD=+/- 14.9 g C m-2 yr-1) in the Ulleung Basin during the study period. The monthly contributions of primary production were not largely variable among different months, and a relatively small interannual production variability was also observed in the Ulleung Basin, which indicates that the Ulleung Basin is a sustaining biologically productive region called as hot spot in the East Sea. However, a significant recent decline in the annual primary production was observed in the Ulleung Basin after 2006. Although no strong possibilities were found in this study, the current warming sea surface temperature and a negative phase PDO index were suggested for the recent declining primary production. For a better understanding of subsequent effects on marine ecosystems, more intensive interdisciplinary field studies will be required in the Ulleung Basin.
Resumo:
The mesozooplankton taken in continuous plankton recorder samples from the Central North Sea has changed from being numerically dominated by holoplanktonic calanoid copepod species from 1958 to the late 1970s to a situation where pluteus larvae of echinoid and ophiuroid echinoderms have been more abundant than any single holoplanktonic species in the 1980s and early 1990s. The abundance of the echinoderm larvae as a proportion of the zooplankton taken in the samples has followed a continuous increasing trend over the Dogger Bank, but off the eastern coast of northern England and southern Scotland the increase did not become obvious until the 1980s. This trend is consistent with reported increases in abundance of the macrobenthos. It is proposed that changes in the benthos have influenced the composition of the plankton.
Resumo:
I. The monthly changes in the distribution and abundance of the Copepoda in the southern North Sea have been investigated from June 1932 to December 1937 by using the Continuous Plankton Recorder. This was towed at a standard depth of 10 metres by ships sailing on regular lines from Hull to Rotterdam, to Bremen and towards the Skagerrak, and later from London to Esbjerg. 2. The methods are described and those limitations which apply more particularly to the Copepoda are discussed (pp. 175 to 186 and 198 to 203). 3. The first part of the report deals with the Copepoda as a whole, i.e. the total population. The difference between the summer and winter distributions is stressed. The variations in numbers from year to year are found to be considerable and it is suggested that they are sufficiently large to be reflected in the success or failure of the broods of those fish which are at some period of their development dependent upon the Copepoda for food. 4. The second part deals with the data concerning the constituent species or groups of allied species ; a list of these is given on p. 197. 5. The group Paracalanus + Pseudocalanus was by far the most abundant and together with the genera Temora and Acartia was found to be responsible for most of the fluctuations in the population (pp. 205 to 208). 6. The distributions, seasonal and spatial, of the other common forms are described, with the exception of that of Oalantts finmarchicus which is to be the subject of a later report. 7. The recorder results are compared with the findings of the International Council survey from 1902 to 1908; some marked disagreements are discussed (pp. 227 to 232). 8. The appearance of the northern forms Oandacia armata and Metridia lucens during the winters of 1932-33, 1933-34 and 1937 are recorded (pp. 222 to 223) 9. A summarised account of the main seasonal changes in the area is given (pp. 232 to 234) and followed by a brief comparison of the 5½ years investigated.
Resumo:
Comprehensive, aggregate nutrient budgets were established for two compartments of the North Sea, the shallow coastal and deeper open regions, and for three different periods, representing pre-eutrophication (∼1950), eutrophication (∼1990) and contemporary (∼2000) phases. The aim was to quantify the major budget components, to identify their sources of variability, to specify the anthropogenic components, and to draw implications for past and future policy. For all three periods, open North Sea budgets were dominated (75%) by fluxes from and to the North-East Atlantic; sediment exchange was of secondary importance (18%). For the coastal North Sea, fluxes during the eutrophication period were dominated by sediment exchange (49% of all inputs), followed by exchange with the open sea (21%), and anthropogenic inputs (19%). Between 1950 and 1990, N-loading of coastal waters increased by a factor of 1.62 and P-loading by 1.45. These loads declined after 1990. Interannual variability in Atlantic inflow was found to correspond to a variability of 11% in nutrient load to the open North Sea. Area-specific external loads of both the open and coastal North Sea were below Vollenweider-type critical loads when expressed relative to depth and flushing. External area-specific load of the coastal North Sea has declined since 1990 from 1.8 to about 1.4 g P m−2 y−1 in 2000, which is close to the estimate of 1.3 for 1950. N-load declined less, leading to an increase in N/P ratio.