2 resultados para information technology support
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The Continuous Plankton Recorder (CPR) survey was conceived from the outset as a programme of applied research designed to assist the fishing industry. Its survival and continuing vigour after 70 years is a testament to its utility, which has been achieved in spite of great changes in our understanding of the marine environment and in our concerns over how to manage it. The CPR has been superseded in several respects by other technologies, such as acoustics and remote sensing, but it continues to provide unrivalled seasonal and geographic information about a wide range of zooplankton and phytoplankton taxa. The value of this coverage increases with time and provides the basis for placing recent observations into the context of long-term, large-scale variability and thus suggesting what the causes are likely to be. Information from the CPR is used extensively in judging environmental impacts and producing quality status reports (QSR); it has shown the distributions of fish stocks, which had not previously been exploited; it has pointed to the extent of ungrazed phytoplankton production in the North Atlantic, which was a vital element in establishing the importance of carbon sequestration by phytoplankton. The CPR continues to be the principal source of large-scale, long-term information about the plankton ecosystem of the North Atlantic. It has recently provided extensive information about the biodiversity of the plankton and about the distribution of introduced species. It serves as a valuable example for the design of future monitoring of the marine environment and it has been essential to the design and implementation of most North Atlantic plankton research.
Resumo:
Science-based approaches to support the conservation of marine biodiversity have been developed in recent years. They include measures of ‘rarity’, ‘diversity’, ‘importance’, biological indicators of water ‘quality’ and measures of ‘sensitivity’. Identifying the sensitivity of species and biotopes, the main topic of this contribution, relies on accessing and interpreting available scientific data in a structured way and then making use of information technology to disseminate suitably presented information to decision makers. The Marine Life Information Network (MarLIN) has achieved that research for a range of environmentally critical species and biotopes over the past four years and has published the reviews on the MarLIN Web site (www.marlin.ac.uk). Now, by linking the sensitivity database and databases of survey information, sensitivity mapping approaches using GIS are being developed. The methods used to assess sensitivity are described and the approach is advocated for wider application in Europe.