16 resultados para improved procedure
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The variable start and duration of the Grey seal breeding season makes the estimation of total pup production from a single census very difficult. Classifying the count into morphological age classes enables the form and timing of the birth rate curve and estimates of pup mortality rates to be elucidated. A simulation technique is described which enables the duration of each morphological stage to be determined from a series of such classified counts taken over one season. A further statistical technique uses these estimates to calculate the mean timing and duration of the breeding season from a single classified count taken from similar populations in subsequent years. This information allows total pup production to be calculated for any appropriate breeding colony. Some guidance is given as to the optimal timing of that single census which would yield the best estimate of production, although the precise date is not critical to the success of the technique. Results from single census estimates obtained in this way are compared with known production data from more detailed surveys for a number of different colonies.
Resumo:
Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.
Resumo:
Satellite remote sensing of ocean colour is the only method currently available for synoptically measuring wide-area properties of ocean ecosystems, such as phytoplankton chlorophyll biomass. Recently, a variety of bio-optical and ecological methods have been established that use satellite data to identify and differentiate between either phytoplankton functional types (PFTs) or phytoplankton size classes (PSCs). In this study, several of these techniques were evaluated against in situ observations to determine their ability to detect dominant phytoplankton size classes (micro-, nano- and picoplankton). The techniques are applied to a 10-year ocean-colour data series from the SeaWiFS satellite sensor and compared with in situ data (6504 samples) from a variety of locations in the global ocean. Results show that spectral-response, ecological and abundance-based approaches can all perform with similar accuracy. Detection of microplankton and picoplankton were generally better than detection of nanoplankton. Abundance-based approaches were shown to provide better spatial retrieval of PSCs. Individual model performance varied according to PSC, input satellite data sources and in situ validation data types. Uncertainty in the comparison procedure and data sources was considered. Improved availability of in situ observations would aid ongoing research in this field.
Resumo:
Agglomerative cluster analyses encompass many techniques, which have been widely used in various fields of science. In biology, and specifically ecology, datasets are generally highly variable and may contain outliers, which increase the difficulty to identify the number of clusters. Here we present a new criterion to determine statistically the optimal level of partition in a classification tree. The criterion robustness is tested against perturbated data (outliers) using an observation or variable with values randomly generated. The technique, called Random Simulation Test (RST), is tested on (1) the well-known Iris dataset [Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Ann. Eugenic. 7, 179–188], (2) simulated data with predetermined numbers of clusters following Milligan and Cooper [Milligan, G.W., Cooper, M.C., 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159–179] and finally (3) is applied on real copepod communities data previously analyzed in Beaugrand et al. [Beaugrand, G., Ibanez, F., Lindley, J.A., Reid, P.C., 2002. Diversity of calanoid copepods in the North Atlantic and adjacent seas: species associations and biogeography. Mar. Ecol. Prog. Ser. 232, 179–195]. The technique is compared to several standard techniques. RST performed generally better than existing algorithms on simulated data and proved to be especially efficient with highly variable datasets.