4 resultados para good lives model

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ocean plays an important role in regulating the climate, acting as a sink for carbon dioxide, perturbing the carbonate system and resulting in a slow decrease of seawater pH. Understanding the dynamics of the carbonate system in shelf sea regions is necessary to evaluate the impact of Ocean Acidification (OA) in these societally important ecosystems. Complex hydrodynamic and ecosystem coupled models provide a method of capturing the significant heterogeneity of these areas. However rigorous validation is essential to properly assess the reliability of such models. The coupled model POLCOMS–ERSEM has been implemented in the North Western European shelf with a new parameterization for alkalinity explicitly accounting for riverine inputs and the influence of biological processes. The model has been validated in a like with like comparison with North Sea data from the CANOBA dataset. The model shows good to reasonable agreement for the principal variables, physical (temperature and salinity), biogeochemical (nutrients) and carbonate system (dissolved inorganic carbon and total alkalinity), but simulation of the derived variables, pH and pCO2, are not yet fully satisfactory. This high uncertainty is attributed mostly to riverine forcing and primary production. This study suggests that the model is a useful tool to provide information on Ocean Acidification scenarios, but uncertainty on pH and pCO2 needs to be reduced, particularly when impacts of OA on ecosystem functions are included in the model systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Red Sea exhibits complex hydrodynamic and biogeochemical dynamics, which vary both in time and space. These dynamics have been explored through the development and application of a 3-D ecosystem model. The simulation system comprises two off-line coupled submodels: the MIT General Circulation Model (MITgcm) and the European Regional Seas Ecosystem Model (ERSEM), both adapted for the Red Sea. The results from an annual simulation under climatological forcing are presented. Simulation results are in good agreement with satellite and in situ data illustrating the role of the physical processes in determining the evolution and variability of the Red Sea ecosystem. The model was able to reproduce the main features of the Red Sea ecosystem functioning, including the exchange with the Gulf of Aden, which is a major driving mechanism for the whole Red Sea ecosystem and the winter overturning taking place in the north. Some model limitations, mainly related to the dynamics of the extended reef system located in the southern part of the Red Sea, which is not currently represented in the model, still need to be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigating the variability of Agulhas leakage, the volume transport of water from the Indian Ocean to the South Atlantic Ocean, is highly relevant due to its potential contribution to the Atlantic Meridional Overturning Circulation as well as the global circulation of heat and salt and hence global climate. Quantifying Agulhas leakage is challenging due to the non-linear nature of this process; current observations are insufficient to estimate its variability and ocean models all have biases in this region, even at high resolution . An Eulerian threshold integration method is developed to examine the mechanisms of Agulhas leakage variability in six ocean model simulations of varying resolution. This intercomparison, based on the circulation and thermo- haline structure at the Good Hope line, a transect to the south west of the southern tip of Africa, is used to identify features that are robust regardless of the model used and takes into account the thermohaline biases of each model. When determined by a passive tracer method, 60 % of the magnitude of Agulhas leakage is captured and more than 80 % of its temporal fluctuations, suggesting that the method is appropriate for investigating the variability of Agulhas leakage. In all simulations but one, the major driver of variability is associated with mesoscale features passing through the section. High resolution (<1/10 deg.) hindcast models agree on the temporal (2–4 cycles per year) and spatial (300–500 km) scales of these features corresponding to observed Agulhas Rings. Coarser resolution models (<1/4 deg.) reproduce similar time scale of variability of Agulhas leakage in spite of their difficulties in representing the Agulhas rings properties. A coarser resolution climate model (2 deg.) does not resolve the spatio-temporal mechanism of variability of Agulhas leakage. Hence it is expected to underestimate the contribution of Agulhas Current System to climate variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigating the variability of Agulhas leakage, the volume transport of water from the Indian Ocean to the South Atlantic Ocean, is highly relevant due to its potential contribution to the Atlantic Meridional Overturning Circulation as well as the global circulation of heat and salt and hence global climate. Quantifying Agulhas leakage is challenging due to the non-linear nature of this process; current observations are insufficient to estimate its variability and ocean models all have biases in this region, even at high resolution . An Eulerian threshold integration method is developed to examine the mechanisms of Agulhas leakage variability in six ocean model simulations of varying resolution. This intercomparison, based on the circulation and thermo- haline structure at the Good Hope line, a transect to the south west of the southern tip of Africa, is used to identify features that are robust regardless of the model used and takes into account the thermohaline biases of each model. When determined by a passive tracer method, 60 % of the magnitude of Agulhas leakage is captured and more than 80 % of its temporal fluctuations, suggesting that the method is appropriate for investigating the variability of Agulhas leakage. In all simulations but one, the major driver of variability is associated with mesoscale features passing through the section. High resolution (<1/10 deg.) hindcast models agree on the temporal (2–4 cycles per year) and spatial (300–500 km) scales of these features corresponding to observed Agulhas Rings. Coarser resolution models (<1/4 deg.) reproduce similar time scale of variability of Agulhas leakage in spite of their difficulties in representing the Agulhas rings properties. A coarser resolution climate model (2 deg.) does not resolve the spatio-temporal mechanism of variability of Agulhas leakage. Hence it is expected to underestimate the contribution of Agulhas Current System to climate variability.