14 resultados para genetic and morphological divergence

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spawning areas of tropical anguillid eels in the South Pacific are poorly known, and more information about their life histories is needed to facilitate conservation. We genetically characterized 83 out of 84 eels caught on Gaua Island (Vanuatu) and tagged 8 eels with pop-up satellite transmitters. Based on morphological evidence, 32 eels were identified as Anguilla marmorata, 45 as A. megastoma and 7 as A. obscura. Thirteen of these eels possessed a mitochondrial DNA sequence (control region, 527 bp) or nuclear haplotype (GTH2b, 268 bp) conflicting with their species designation. These individuals also had multi-locus genotypes (6 microsatellite loci) intermediate between the species, and 9 of these eels further possessed heterozygote genotypes at species-diagnostic nuclear single nucleotide polymorphisms (SNPs). We classified these individuals as possibly admixed between A. marmorata and A. megastoma. One A. marmorata and 1 A. megastoma migrated 634 and 874 km, respectively, towards the border between the South Equatorial Current and the South Equatorial Counter Current. Both species descended from around 200 m depth at night to 750 m during the day. Lunar cycle affected the upper limit of migration depths of both species. The tags remained attached for 3 and 5 mo and surfaced <300 km from the pop-up location of a previously tagged A. marmorata pop-up location. A salinity maximum at the pop-up locations corresponding to the upper nighttime eel migration depths may serve as a seamark of the spawning area. The similar pop-up locations of both species and the evidence for admixture suggest that these tropical eels share a sympatric spawning area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plagiogrammaceae, a poorly described family of diatoms, are common inhabitants of the shallow marine littoral zone, occurring either in the sediments or as epiphytes. Previous molecular phylogenies of the Plagiogrammaceae were inferred but included only up to six genera: Plagiogramma, Dimeregramma, Neofragilaria, Talaroneis, Psammogramma and Psammoneis. In this paper, we describe a new plagiogrammoid genus, Orizaformis, obtained from Bohai Sea (China) and present molecular phylogenies of the family based on three and four genes (nuclear-encoded large and small subunit ribosomal RNAs and chloroplast-encoded rbcL and psbC). Also included in the new phylogenies is Glyphodesmis. The phylogenies suggest that the Plagiogrammaceae is composed of two major clades: one consisting of Talaroneis, Orizaformis and Psammoneis, and the second of Glyphodesmis, Psammogramma, Neofragilaria, Dimeregramma and Plagiogramma. In addition, we describe three new species within established genera: Psammoneis obaidii, which was collected from the Red Sea, Saudi Arabia; and Neofragilaria stilus and Talaroneis biacutifrons from the Mozambique Channel, Indian Ocean, and illustrate two new combination taxa: Neofragilaria anomala and Neofragilaria lineata. Our observations suggest that the biodiversity of the family is strongly needed to be researched, and the phylogenetic analyses provide a useful framework for future studies of Plagiogrammaceae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plagiogrammaceae, a poorly described family of diatoms, are common inhabitants of the shallow marine littoral zone, occurring either in the sediments or as epiphytes. Previous molecular phylogenies of the Plagiogrammaceae were inferred but included only up to six genera: Plagiogramma, Dimeregramma, Neofragilaria, Talaroneis, Psammogramma and Psammoneis. In this paper, we describe a new plagiogrammoid genus, Orizaformis, obtained from Bohai Sea (China) and present molecular phylogenies of the family based on three and four genes (nuclear-encoded large and small subunit ribosomal RNAs and chloroplast-encoded rbcL and psbC). Also included in the new phylogenies is Glyphodesmis. The phylogenies suggest that the Plagiogrammaceae is composed of two major clades: one consisting of Talaroneis, Orizaformis and Psammoneis, and the second of Glyphodesmis, Psammogramma, Neofragilaria, Dimeregramma and Plagiogramma. In addition, we describe three new species within established genera: Psammoneis obaidii, which was collected from the Red Sea, Saudi Arabia; and Neofragilaria stilus and Talaroneis biacutifrons from the Mozambique Channel, Indian Ocean, and illustrate two new combination taxa: Neofragilaria anomala and Neofragilaria lineata. Our observations suggest that the biodiversity of the family is strongly needed to be researched, and the phylogenetic analyses provide a useful framework for future studies of Plagiogrammaceae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the years, many reviews of different aspects of diatom biology, ecology and evolution have appeared. Since 1993 many molecular trees have been produced to infer diatom phylogeny. In 2004, Medlin & Kaczmarska revised the systematics of the diatoms based on more than 20 years of consistent recovery of two major clades of diatoms that did not correspond to a traditional concept of centrics and pennates and established three classes of diatoms: Clade 1 = Coscinodiscophyceae (radial centrics) and Clade 2 = Mediophyceae (polar centrics + radial Thalassiosirales) and Bacillariophyceae (pennates). However, under certain analytical conditions, an alternative view of diatom evolution, a grades of clades, has been recovered that suggests a gradual evolution from centric to pennate symmetry. These two schemes of diatom evolution are evaluated in terms of whether or not the criteria advocated by Medlin & Kaczmarska that should be met to recover monophyletic classes have been used. The monophyly of the three diatom classes can only be achieved if (1) a secondary structure of the small subunit (SSU) rRNA gene was used to construct the alignment and not an alignment based on primary structure and (2) multiple outgroups were used. These requirements have not been met in each study of diatom evolution; hence, the grade of clades, which is useful in reconstructing the sequence of evolution, is not useful for accepting the new classification of the diatoms. Evidence for how these two factors affect the recovery of the three monophyletic classes is reviewed here. The three classes have been defined by clear morphological differences primarily based on gametangia and auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. New evidence supporting the three clades is reviewed. Other features of the cell are examined to determine whether they can also be used to support the monophyly of the three classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the years, many reviews of different aspects of diatom biology, ecology and evolution have appeared. Since 1993 many molecular trees have been produced to infer diatom phylogeny. In 2004, Medlin & Kaczmarska revised the systematics of the diatoms based on more than 20 years of consistent recovery of two major clades of diatoms that did not correspond to a traditional concept of centrics and pennates and established three classes of diatoms: Clade 1 = Coscinodiscophyceae (radial centrics) and Clade 2 = Mediophyceae (polar centrics + radial Thalassiosirales) and Bacillariophyceae (pennates). However, under certain analytical conditions, an alternative view of diatom evolution, a grades of clades, has been recovered that suggests a gradual evolution from centric to pennate symmetry. These two schemes of diatom evolution are evaluated in terms of whether or not the criteria advocated by Medlin & Kaczmarska that should be met to recover monophyletic classes have been used. The monophyly of the three diatom classes can only be achieved if (1) a secondary structure of the small subunit (SSU) rRNA gene was used to construct the alignment and not an alignment based on primary structure and (2) multiple outgroups were used. These requirements have not been met in each study of diatom evolution; hence, the grade of clades, which is useful in reconstructing the sequence of evolution, is not useful for accepting the new classification of the diatoms. Evidence for how these two factors affect the recovery of the three monophyletic classes is reviewed here. The three classes have been defined by clear morphological differences primarily based on gametangia and auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. New evidence supporting the three clades is reviewed. Other features of the cell are examined to determine whether they can also be used to support the monophyly of the three classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data from the continuous plankton recorder (CPR) survey collected in the late-1940s to early-1960s indicated that the abundance of decapod larvae was low and the seasonal peak of abundance was late following cold winters. The phenological effect of temperature was shown to be consistent with relationships between both geographical and interannual patterns of variation. Analyses of CPR data collected from the 1940s to the present day reveal large-scale long-term changes in the abundance and phenology of the North Sea meroplankton. Echinoderm larvae, whose peak abundance has advanced by 47 days, show the greatest shift in timing. Echinoderm larvae have also increased in abundance to become the most abundant taxon in North Sea CPR samples. Genetic and morphological analyses of CPR samples show that the variations in echinoderm larvae are mainly attributable to an increasing abundance and earlier occurrence of the larvae of a resident species, Echinocardium cordatum, rather than a change in species composition. The remarkable scale of the changes in abundance and phenology of the meroplankton, which are greater than those seen in the holoplankton, has stimulated the development of further research into the causes and effects of these changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calcifying coccolithophores have been proposed as a potentially vulnerable group in the face of increasing surface ocean CO2 levels. A full understanding of the likely responses of this group requires better mechanistic information on pH- and CO2-sensitive processes that underlie cell function at molecular, cellular and population levels. New findings on the mechanisms of pH homeostasis at a molecular and cellular level in both diatoms and coccolithophores are shaping our understanding of how these important groups may respond or acclimate to changing ocean pH. Critical parameters including intracellular pH homeostasis and cell surface pH will be considered. These studies are being carried out in parallel with genetic studies of natural oceanic populations to assess the natural genetic and physiological diversity that will underlie adaptation of populations in the long term.