6 resultados para future directions

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Continuous Plankton Recorder (CPR) survey, operated by the Sir Alister Hardy Foundation for Ocean Science (SAHFOS), is the largest plankton monitoring programme in the world and has spanned >70 yr. The dataset contains information from ~200 000 samples, with over 2.3 million records of individual taxa. Here we outline the evolution of the CPR database through changes in technology, and how this has increased data access. Recent high-impact publications and the expanded role of CPR data in marine management demonstrate the usefulness of the dataset. We argue that solely supplying data to the research community is not sufficient in the current research climate; to promote wider use, additional tools need to be developed to provide visual representation and summary statistics. We outline 2 software visualisation tools, SAHFOS WinCPR and the digital CPR Atlas, which provide access to CPR data for both researchers and non-plankton specialists. We also describe future directions of the database, data policy and the development of visualisation tools. We believe that the approach at SAHFOS to increase data accessibility and provide new visualisation tools has enhanced awareness of the data and led to the financial security of the organisation; it also provides a good model of how long-term monitoring programmes can evolve to help secure their future.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing availability and extent of biological ocean time series (from both in situ and satellite data) have helped reveal significant phenological variability of marine plankton. The extent to which the range of this variability is modified as a result of climate change is of obvious importance. Here we summarize recent research results on phenology of both phytoplankton and zooplankton. We suggest directions to better quantify and monitor future plankton phenology shifts, including (i) examining the main mode of expected future changes (ecological shifts in timing and spatial distribution to accommodate fixed environmental niches vs. evolutionary adaptation of timing controls to maintain fixed biogeography and seasonality), (ii) broader understanding of phenology at the species and community level (e.g. for zooplankton beyond Calanus and for phytoplankton beyond chlorophyll), (iii) improving and diversifying statistical metrics for indexing timing and trophic synchrony and (iv) improved consideration of spatio-temporal scales and the Lagrangian nature of plankton assemblages to separate time from space changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing evidence that climate change could affect marine benthic systems. This review provides information of climate change‐related impacts on the marine benthos in the North Atlantic. We cover a number of related research aspects, mainly in connection to two key issues. First, is the relationship between different physical aspects of climate change and the marine benthos. This section covers: (a) the responses to changes in seawater temperature (biogeographic shifts and phenology); (b) altered Hydrodynamics; (c) ocean acidification (OA); and (d) sea‐level rise‐coastal squeeze. The second major issue addressed is the possible integrated impact of climate change on the benthos. This work is based on relationships between proxies for climate variability, notably the North Atlantic Oscillation (NAO) index, and the long‐term marine benthos. The final section of our review provides a series of conclusions and future directions to support climate change research on marine benthic systems. WIREs Clim Change 2015, 6:203–223. doi: 10.1002/wcc.330

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An overview is provided of the observed and potential future responses of zooplankton communities to global warming. I begin by describing the importance of zooplankton in ocean ecosystems and the attributes that make them sensitive beacons of climate change. Global warming may have even greater repercussions for marine ecosystems than for terrestrial ecosystems, because temperature influences water column stability, nutrient enrichment, and the degree of new production, and thus the abundance, size composition, diversity, and trophic efficiency of zooplankton. Pertinent descriptions of physical changes in the ocean in response to climate change are given as a prelude to a detailed discussion of observed impacts of global warming on zooplankton. These manifest as changes in the distribution of individual species and assemblages, in the timing of important life-cycle events, and in abundance and community structure. The most illustrative case studies, where climate has had an obvious, tangible impact on zooplankton and substantial ecosystem consequences, are presented. Changes in the distribution and phenology of zooplankton are faster and greater than those observed for terrestrial groups. Relevant projected changes in ocean conditions are then presented, followed by an exploration of potential future changes in zooplankton communities from the perspective of different modelling approaches. Researchers have used a range of modelling approaches on individual species and functional groups forced by output from climate models under future greenhouse gas emission scenarios. I conclude by suggesting some potential future directions in climate change research for zooplankton, viz. the use of richer zooplankton functional groups in ecosystem models; greater research effort in tropical systems; investigating climate change in conjunction with other human impacts; and a global zooplankton observing system.