10 resultados para freshwater prawns
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Cyanophages are viruses that infect the cyanobacteria, globally important photosynthetic microorganisms. Cyanophages are considered significant components of microbial communities, playing major roles in influencing host community diversity and primary productivity, terminating cyanobacterial water blooms, and influencing biogeochemical cycles. Cyanophages are ubiquitous in both marine and freshwater systems; however, the majority of molecular research has been biased toward the study of marine cyanophages. In this study, a diagnostic probe was developed to detect freshwater cyanophages in natural waters. Oligonucleotide PCR-based primers were designed to specifically amplify the major capsid protein gene from previously characterized freshwater cyanomyoviruses that are infectious to the filamentous, nitrogen-fixing cyanobacterial genera Anabaena and Nostoc. The primers were also successful in yielding PCR products from mixed virus communities concentrated from water samples collected from freshwater lakes in the United Kingdom. The probes are thought to provide a useful tool for the investigation of cyanophage diversity in freshwater environments.
Resumo:
Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services.