4 resultados para flat and curved layer slicing

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the more than 50 years that the Continuous Plankton Recorder (CPR) survey has operated on a regular monthly basis in the north-east Atlantic and North Sea, large changes have been witnessed in the planktonic ecosystem. These changes have taken the form of long-term trends in abundance for certain species or stepwise changes for others, and in many cases are correlated with a mode of climatic variability in the North Atlantic, either: (1) the North Atlantic Oscillation (NAO), a basin-scale atmospheric alteration of the pressure field between the Azores high pressure cell and the Icelandic Low; or (2) the Gulf Stream Index (GSI), which measures the latitudinal position of the north wall of the Gulf Stream. Recent work has shown that the changes in the GSI are coupled with the NAO and Pacific Southern Oscillation with a 2 year lag. The plankton variability is also possibly linked to changes observed in the distribution and flux of water masses in the surface, intermediate and deep waters of the North Atlantic. For example, in the last two decades, the extent and location of the formation of North Atlantic Deep Water, Labrador Sea Intermediate Water and Norwegian Sea intermediate and upper-layer water has altered considerably. This paper discusses the extent to which observed changes in plankton abundance and distribution may be linked to this basin-scale variability in hydrodynamics. The results are also placed within the context of global climate warming and the possible effects of the observed melting of Arctic permafrost and sea ice on the subpolar North Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimating primary production at large spatial scales is key to our understanding of the global carbon cycle. Algorithms to estimate primary production are well established and have been used in many studies with success. One of the key parameters in these algorithms is the chlorophyll-normalised production rate under light saturation (referred to as the light saturation parameter or the assimilation number). It is known to depend on temperature, light history and nutrient conditions, but assigning a magnitude to it at particular space-time points is difficult. In this paper, we explore two models to estimate the assimilation number at the global scale from remotely-sensed data that combine methods to estimate the carbon-to-chlorophyll ratio and the maximum growth rate of phytoplankton. The inputs to the algorithms are the surface concentration of chlorophyll, seasurface temperature, photosynthetically-active radiation af the surface of the sea, sea surface nutrient concentration and mixed-layer depth. A large database of in situ estimates of the assimilation number is used to develop the models and provide elements of validation. The comparisons with in situ observations are promising and global maps of assimilation number are produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regime shifts have been reported in many marine ecosystems, and are often expressed as an abrupt change occurring in multiple physical and biological components of the system. In the Gulf of Alaska, a regime shift in the late 1970s was observed, indicated by an abrupt increase in sea surface temperature and major shifts in the catch of many fish species. This late 1970s regime shift in the Gulf of Alaska was followed by another shift in the late 1980s, not as pervasive as the 1977 shift, but which nevertheless did not return to the prior state. A thorough understanding of the extent and mechanisms leading to such regime shifts is challenged by data paucity in time and space. We investigate the ability of a suite of ocean biogeochemistry models of varying complexity to simulate regime shifts in the Gulf of Alaska by examining the presence of abrupt changes in time series of physical variables (sea surface temperature and mixed layer depth), nutrients and biological variables (chlorophyll, primary productivity and plankton biomass) using change-point analysis. Our study demonstrates that ocean biogeochemical models are capable of simulating the late 1970s shift, indicating an abrupt increase in sea surface temperature forcing followed by an abrupt decrease in nutrients and biological productivity. This predicted shift is consistent among all the models, although some of them exhibit an abrupt transition (i.e. a significant shift from one year to the next), whereas others simulate a smoother transition. Some models further suggest that the late 1980s shift was constrained by changes in mixed layer depth. Our study demonstrates that ocean biogeochemical can successfully simulate regime shifts in the Gulf of Alaska region, thereby providing better understanding of how changes in physical conditions are propagated from lower to upper trophic levels through bottom-up controls.