4 resultados para filled URAs

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implementation of Marine Protected Areas (MPAs) is ultimately a social endeavour to sustain or improve human well-being via the conservation of marine ecosystems. The degree to which ecological gains are realised can depend upon how economic, ecological and social costs (negative impacts) and benefits (positive impacts) are included in the designation and management process. Without the support of key stakeholder groups whose user rights have been affected by the creation of an MPA, human impacts cannot be reduced. This study analyses a three year dataset to understand the themes associated with the economic, environmental and social costs and benefits of an MPA in Lyme Bay, United Kingdom (UK) following its establishment in 2008. Methodologically, the paper presents an ecosystem based management framework for analysing costs and benefits. Two hundred and forty one individuals were interviewed via questionnaire between 2008 and 2010 to determine perceptions and the level of support towards the MPA. Results reveal that despite the contentious manner in which this MPA was established, support for the MPA is strong amongst the majority of stakeholder groups. The level of support and the reasons given for support vary between stakeholder groups. Overall, the stakeholders perceive the social, economic and environmental benefits of the MPA to outweigh the perceived costs. There have been clear social costs of the MPA policy and these have been borne by mobile and static gear fishermen and charter boat operators. Local support for this MPA bodes well for the development of a network of MPAs around the UK coast under the United Kingdom Marine and Coastal Access Act 2009. However, this initial optimism is at risk if stakeholder expectation is not managed and the management vacuum is not filled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Northern Hemisphere has been warmer since 1980 than at any other time during the last 2000 years. The observed increase in temperature has been generally higher in northern than in southern European seas, and higher in enclosed than in open seas. Although European marine ecosystems are influenced by many other factors, such as nutrient enrichment and overfishing, every region has shown at least some changes that were most likely attributable to recent climate change. It is expected that within open systems there will generally be (further) northward movement of species, leading to a switch from polar to more temperate species in the northern seas such as the Arctic, Barents Sea and the Nordic Seas, and subtropical species moving northward to temperate regions such as the Iberian upwelling margin. For seas that are highly influenced by river runoff, such as the Baltic Sea, an increase in freshwater due to enhanced rainfall will lead to a shift from marine to more brackish and even freshwater species. If semi-enclosed systems such as the Mediterranean and the Black Sea lose their endemic species, the associated niches will probably be filled by species originating from adjacent waters and, possibly, with species transported from one region to another via ballast water and the Suez Canal. A better understanding of potential climate change impacts (scenarios) at both regional and local levels, the development of improved methods to quantify the uncertainty of climate change projections, the construction of usable climate change indicators, and an improvement of the interface between science and policy formulation in terms of risk assessment will be essential to formulate and inform better adaptive strategies to address the inevitable consequences of climate change.