18 resultados para few body

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivariate experiments are used to study the effects of body size, food concentration, and season on the oxygen consumption, ammonia excretion, food assimilation efficiency and filtration rate of Mytilus edulis adults. Food concentrations and season affect both the intercept and the slope of the allometric equation describing oxygen uptake as a function of body size. Multiple regression and response surface techniques are used to describe and illustrate the complex relationship between metabolic rate, ration, season and the body size of M. edulis. Filtration rate has a relatively low weight exponent Q> = 038) and the intercept for the allometric equation is not significantly affected by food concentration, season or acclimation temperatures between 5 and 20 °C. Food assimilation efficiency declines exponentially with increasing food concentration and is dependent on body size at high food levels. The rate of ammonia excretion shows a similar seasonal cycle to that of oxygen consumption. They are both minimal in the autumn/winter and reach a maximum in the spring /summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an accumulating body of evidence to suggest that many marine ecosystems in the North Atlantic, both physically and biologically are responding to changes in regional climate caused predominately by the warming of air and sea surface temperatures (SST) and to a varying degree by the modification of oceanic currents, precipitation regimes and wind patterns. The biological manifestations of rising SST and oceanographic changes have variously taken the form of biogeographical, phenological, physiological and community changes. For example, during the last 40 years there has been a northerly movement of warmer water plankton by 10 degree latitude in the north-east Atlantic and a similar retreat of colder water plankton to the north. This geographical movement is much more pronounced than any documented terrestrial study, presumably due to advective processes playing an important role. Other research has shown that the plankton community in the North Sea has responded to changes in SST by adjusting their seasonality (in some cases a shift in seasonal cycles of over six weeks has been detected), but more importantly the response to climate warming varied between different functional groups and trophic levels, leading to mismatch. Therefore, while it has been documented that marine ecosystems in certain regions of the Atlantic have undergone some conspicuous changes over the last few decades it is not known whether this is a pan-oceanic homogenous response. Using these two most prominent responses and/or indicative signals of pelagic ecosystems to hydro-climatic change, changes in species phenology and the biogeographical movement of populations, we attempt to identify vulnerable regional areas in terms of particularly rapid and marked change.