6 resultados para fertility of soil

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998–2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño–Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yield in organic farming is generally much lower than its potential, which is due to its specificity. The objective of the present study was to quantify the yield spatial variation of wheat and relate it to soil parameters in an organic farm located in the north of the Negev Desert. Soil samples were gathered in a triangular grid at three time intervals. Yields were measured at 73 georeferenced points before the actual harvest. Several thematic maps of soil and yield parameters were produced using geographic information system and geostatistical methods. The strongest spatial correlation was found in the weight of 1000 grains and the weakest was in carbon flow. Temporal relationships were found between soil nitrate concentration, soil water content, and leaf area index. Wheat yield varied from 1.11 to 2.84 Mg ha(-1) and this remarkable variation indicates that the spatial analysis of soil and yield parameters is significant in organic agriculture.