5 resultados para environmental knowledge
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
At the start of the industrial revolution (circa 1750) the atmospheric concentration of carbon dioxide (CO2) was around 280 ppm. Since that time the burning of fossil fuel, together with other industrial processes such as cement manufacture and changing land use, has increased this value to 400 ppm, for the first time in over 3 million years. With CO2 being a potent greenhouse gas, the consequence of this rise for global temperatures has been dramatic, and not only for air temperatures. Global Sea Surface Temperature (SST) has warmed by 0.4–0.8 °C during the last century, although regional differences are evident (IPCC, 2007). This rise in atmospheric CO2 levels and the resulting global warming to some extent has been ameliorated by the oceanic uptake of around one quarter of the anthropogenic CO2 emissions (Sabine et al., 2004). Initially this was thought to be having little or no impact on ocean chemistry due to the capacity of the ocean’s carbonate buffering system to neutralise the acidity caused when CO2 dissolves in seawater. However, this assumption was challenged by Caldeira and Wickett (2005) who used model predictions to show that the rate at which carbonate buffering can act was far too slow to moderate significant changes to oceanic chemistry over the next few centuries. Their model predicted that since pre-industrial times, ocean surface water pH had fallen by 0.1 pH unit, indicating a 30% increase in the concentration of H+ ions. Their model also showed that the pH of surface waters could fall by up to 0.4 units before 2100, driven by continued and unabated utilisation of fossil fuels. Alongside increasing levels of dissolved CO2 and H+ (reduced pH) an increase in bicarbonate ions together with a decrease in carbonate ions occurs. These chemical changes are now collectively recognised as “ocean acidification”. Concern now stems from the knowledge that concentrations of H+, CO2, bicarbonate and carbonate ions impact upon many important physiological processes vital to maintaining health and function in marine organisms. Additionally, species have evolved under conditions where the carbonate system has remained relatively stable for millions of years, rendering them with potentially reduced capacity to adapt to this rapid change. Evidence suggests that, whilst the impact of ocean acidification is complex, when considered alongside ocean warming the net effect on the health and productivity of the oceans will be detrimental.
Resumo:
The open service network for marine environmental data (NETMAR) project uses semantic web technologies in its pilot system which aims to allow users to search, download and integrate satellite, in situ and model data from open ocean and coastal areas. The semantic web is an extension of the fundamental ideas of the World Wide Web, building a web of data through annotation of metadata and data with hyperlinked resources. Within the framework of the NETMAR project, an interconnected semantic web resource was developed to aid in data and web service discovery and to validate Open Geospatial Consortium Web Processing Service orchestration. A second semantic resource was developed to support interoperability of coastal web atlases across jurisdictional boundaries. This paper outlines the approach taken to producing the resource registry used within the NETMAR project and demonstrates the use of these semantic resources to support user interactions with systems. Such interconnected semantic resources allow the increased ability to share and disseminate data through the facilitation of interoperability between data providers. The formal representation of geospatial knowledge to advance geospatial interoperability is a growing research area. Tools and methods such as those outlined in this paper have the potential to support these efforts.
Resumo:
The DIESE program (Determination of relevant Indicators for Environmental monitoring: A Strategy for Europe) brought together seven French and British research teams, a private company and the agencies responsible for the management of water bodies of the two countries (ONEMA and the Environmental Agency) in a joint effort to document the ecotoxicological effects related to the presence of chemicals in the environment. To contribute to a better understanding and management of the environment, the program has expanded its efforts to (1) use existing knowledge, or new information acquired during the research program, to identify important biological problems affecting the wildlife, (2) increase our understanding of toxicological mechanisms involved and thus be able to identify the causes of the identified dysfunctions and (3) to hone our expertise and vigilance system in order to better monitor changes in the environment and make appropriate diagnoses.
Resumo:
Large efforts are on-going within the EU to prepare the Marine Strategy Framework Directive’s (MSFD) assessment of the environmental status of the European seas. This assessment will only be as good as the indicators chosen to monitor the eleven descriptors of good environmental status (GEnS). An objective and transparent framework to determine whether chosen indicators actually support the aims of this policy is, however, not yet in place. Such frameworks are needed to ensure that the limited resources available to this assessment optimize the likelihood of achieving GEnS within collaborating states. Here, we developed a hypothesis-based protocol to evaluate whether candidate indicators meet quality criteria explicit to the MSFD, which the assessment community aspires to. Eight quality criteria are distilled from existing initiatives, and a testing and scoring protocol for each of them is presented. We exemplify its application in three worked examples, covering indicators for three GEnS descriptors (1, 5 and 6), various habitat components (seaweeds, seagrasses, benthic macrofauna and plankton), and assessment regions (Danish, Lithuanian and UK waters). We argue that this framework provides a necessary, transparent and standardized structure to support the comparison of candidate indicators, and the decision-making process leading to indicator selection. Its application could help identify potential limitations in currently available candidate metrics and, in such cases, help focus the development of more adequate indicators. Use of such standardized approaches will facilitate the sharing of knowledge gained across the MSFD parties despite context-specificity across assessment regions, and support the evidence-based management of European seas.
Resumo:
Large efforts are on-going within the EU to prepare the Marine Strategy Framework Directive’s (MSFD) assessment of the environmental status of the European seas. This assessment will only be as good as the indicators chosen to monitor the eleven descriptors of good environmental status (GEnS). An objective and transparent framework to determine whether chosen indicators actually support the aims of this policy is, however, not yet in place. Such frameworks are needed to ensure that the limited resources available to this assessment optimize the likelihood of achieving GEnS within collaborating states. Here, we developed a hypothesis-based protocol to evaluate whether candidate indicators meet quality criteria explicit to the MSFD, which the assessment community aspires to. Eight quality criteria are distilled from existing initiatives, and a testing and scoring protocol for each of them is presented. We exemplify its application in three worked examples, covering indicators for three GEnS descriptors (1, 5 and 6), various habitat components (seaweeds, seagrasses, benthic macrofauna and plankton), and assessment regions (Danish, Lithuanian and UK waters). We argue that this framework provides a necessary, transparent and standardized structure to support the comparison of candidate indicators, and the decision-making process leading to indicator selection. Its application could help identify potential limitations in currently available candidate metrics and, in such cases, help focus the development of more adequate indicators. Use of such standardized approaches will facilitate the sharing of knowledge gained across the MSFD parties despite context-specificity across assessment regions, and support the evidence-based management of European seas.