8 resultados para environmental flow

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An inexpensive Marine Environmental Recorder is described. The instrument system is small, lightweight and of low-power consumption. It is flexible, simple to operate and economical. It can be used remotely in a moored, buoyed or towed instrument system, recording measurements continuously for up to 24 h, or intermittently for 1 min every hour, for a period of up to 60 d. It has been used extensively in the Continuous Plankton Recorder and the Undulating Oceanographic Recorder to measure temperature, depth and occasionally chlorophyll and radiant energy; as a temperature recorder, it has a resolution of 0.1 Co, an uncertainty of measurement of ±0.1 Co and a stability of calibration within ±0.1 Co over a period of several months. With optional additional sensors for pitch, roll, vibration, acceleration and water-flow, the instrument system has been used to measure the performance of underwater towed vehicles and plankton samplers. The Marine Environmental Recorder is being incorporated into an instrument system in a data buoy, for automatically monitoring the marine environment in estuaries around the British Isles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fisheries sector is crucial to the Bangladeshi economy and wellbeing, accounting for 4.4% of national Gross Domestic Product (GDP) and 22.8% of agriculture sector production, and supplying ca.60% of the national animal protein intake. Fish is vital to the 16 million Bangladeshis living near the coast, a number that has doubled since the 1980s. Here we develop and apply tools to project the long term productive capacity of Bangladesh marine fisheries under climate and fisheries management scenarios, based on downscaling a global climate model, using associated river flow and nutrient loading estimates, projecting high resolution changes in physical and biochemical ocean properties, and eventually projecting fish production and catch potential under different fishing mortality targets. We place particular interest on Hilsa shad (Tenualosa ilisha), which accounts for ca.11% of total catches, and Bombay duck (Harpadon nehereus), a low price fish that is the second highest catch in Bangladesh and is highly consumed by low income communities. It is concluded that the impacts of climate change, under greenhouse emissions scenario A1B, are likely to reduce the potential fish production in the Bangladesh Exclusive Economic Zone (EEZ) by less than 10%. However, these impacts are larger for the two target species. Under sustainable management practices we expect Hilsa shad catches to show a minor decline in potential catch by 2030 but a significant (25%) decline by 2060. However, if overexploitation is allowed catches are projected to fall much further, by almost 95% by 2060, compared to the Business as Usual scenario for the start of the 21st century. For Bombay duck, potential catches by 2060 under sustainable scenarios will produce a decline of less than 20% compared to current catches. The results demonstrate that management can mitigate or exacerbate the effects of climate change on ecosystem productivity.