8 resultados para environmental damage

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of short-term (7 d) exposure to environmental hypoxia (2.11 mg O-2 L-1; control: 6.96 mg O-2 L-1) and varying degrees of shell damage (1 or 2, 1 mm diameter holes; control: no holes) on respiration rate, clearance rate, ammonia excretion rate, scope for growth (SFG) and body condition index were investigated in adult blue mussels (Mytilus edulis). There was a significant hypoxia-related reduction in SFG (>6.70 to 0.92J g(-1) h(-1)) primarily due to a reduction in energy acquisition as a result of reduced clearance rates during hypoxia. Shell damage had no significant affect on any of the physiological processes measured or the SFG calculated. Body condition was unaffected by hypoxia or shell damage. In conclusion, minor physical damage to mussels had no effect on physiological energetics but environmental hypoxia compromised growth, respiration and energy acquisition presumably by reducing feeding rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain physiological differences between individuals in different populations of the mussel, Mytilus edulis, are described. In particular, the scope for growth differs in space and time and may be used to assess the animals' physiological condition. When the required measurements are made in the field, the rates of growth predicted from the physiological data agree well with observed rates of growth. An alternative approach utilizes mussels transplanted to various waters, with indices of condition then measured in the laboratory under standard conditions; an example of this approach is illustrated. Laboratory experiments are used to equate various levels of physiological condition with fecundity, in an attempt to equate physiological effects on the individual with likely population damage. A cytochemical index of stress is described, based on the latency of lysosomal enzymes; spatial variability in this index, and its relation with the scope for growth, are discussed. Finally, the results of some experiments on the effects of petroleum hydrocarbons on mussels are described and the presence of inducible activity of NADPH-dependent tetrazolium reductase in the blood cells is demonstrated. Certain considerations that apply in adopting similar measurements of biological effects of pollution in environmental monitoring programmes are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Harmful algal blooms (HAB) occur worldwide and cause health problems and economic damage to fisheries and tourism. Monitoring for toxic algae is therefore essential but is based primarily on light microscopy, which is time consuming and can be limited by insufficient morphological characters such that more time is needed to examine critical features with electron microscopy. Monitoring with molecular tools is done in only a few places world-wide. EU FP7 MIDTAL (Microarray Detection of Toxic Algae) used SSU and LSU rRNA genes as targets on microarrays to identify toxic species. In order to comply with current monitoring requirements to report cell numbers as the relevant threshold measurement to trigger closure of fisheries, it was necessary to calibrate our microarray to convert the hybridisation signal obtained to cell numbers. Calibration curves for two species of Pseudo-nitzschia for use with the MIDTAL microarray are presented to obtain cell numbers following hybridisation. It complements work presented by Barra et al. (2012b. Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1330-1v) for two other Pseudo-nitzschia spp., Dittami and Edvardsen (2012a. J. Phycol. 48, 1050) for Pseudochatonella, Blanco et al. (2013. Harmful Algae 24, 80) for Heterosigma, McCoy et al. (2013. FEMS. doi: 10.1111/1574-6941.12277) for Prymnesium spp., Karlodinium veneficum, and cf. Chatonella spp. and Taylor et al. (2014. Harmful Algae, in press) for Alexandrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High level environmental screening study for offshore wind farm developments – marine habitats and species This report provides an awareness of the environmental issues related to marine habitats and species for developers and regulators of offshore wind farms. The information is also relevant to other offshore renewable energy developments. The marine habitats and species considered are those associated with the seabed, seabirds, and sea mammals. The report concludes that the following key ecological issues should be considered in the environmental assessment of offshore wind farms developments: • likely changes in benthic communities within the affected area and resultant indirect impacts on fish, populations and their predators such as seabirds and sea mammals; • potential changes to the hydrography and wave climate over a wide area, and potential changes to coastal processes and the ecology of the region; • likely effects on spawning or nursery areas of commercially important fish and shellfish species; • likely effects on mating and social behaviour in sea mammals, including migration routes; • likely effects on feeding water birds, seal pupping sites and damage of sensitive or important intertidal sites where cables come onshore; • potential displacement of fish, seabird and sea mammals from preferred habitats; • potential effects on species and habitats of marine natural heritage importance; • potential cumulative effects on seabirds, due to displacement of flight paths, and any mortality from bird strike, especially in sensitive rare or scarce species; • possible effects of electromagnetic fields on feeding behaviour and migration, especially in sharks and rays, and • potential marine conservation and biodiversity benefits of offshore wind farm developments as artificial reefs and 'no-take' zones. The report provides an especially detailed assessment of likely sensitivity of seabed species and habitats in the proposed development areas. Although sensitive to some of the factors created by wind farm developments, they mainly have a high recovery potential. The way in which survey data can be linked to Marine Life Information Network (MarLIN) sensitivity assessments to produce maps of sensitivity to factors is demonstrated. Assessing change to marine habitats and species as a result of wind farm developments has to take account of the natural variability of marine habitats, which might be high especially in shallow sediment biotopes. There are several reasons for such changes but physical disturbance of habitats and short-term climatic variability are likely to be especially important. Wind farm structures themselves will attract marine species including those that are attached to the towers and scour protection, fish that associate with offshore structures, and sea birds (especially sea duck) that may find food and shelter there. Nature conservation designations especially relevant to areas where wind farm might be developed are described and the larger areas are mapped. There are few designated sites that extend offshore to where wind farms are likely to be developed. However, cable routes and landfalls may especially impinge on designated sites. The criteria that have been developed to assess the likely marine natural heritage importance of a location or of the habitats and species that occur there can be applied to survey information to assess whether or not there is anything of particular marine natural heritage importance in a development area. A decision tree is presented that can be used to apply ‘duty of care’ principles to any proposed development. The potential ‘gains’ for the local environment are explored. Wind farms will enhance the biodiversity of areas, could act as refugia for fish, and could be developed in a way that encourages enhancement of fish stocks including shellfish.