2 resultados para energy angular districution function
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Measurements of population growth, generation time, fecundity and respiration in laboratory culture have been made, in relation to temperature and salinity, for the nematode Diplolaimelloides bruciei Hopper, a species normally associated with decayed material of the marsh grass Spartina. The intrinsic rate of increase (r) is high: it is related to temperature between 5° and 25°C by a sigmoid function which is steepest between 10° and 15°C, and is maximum at 26‰ salinity. Generation time is related to temperature by a power function and is shortest at 26‰ salinity. The effect of temperature on generation time is consistent with other data for marine nematodes, and the steep slope of r against temperature is largely due to the marked effect of temperature on fecundity. A sex ratio of 2:1 in favour of males is maintained regardless of culture conditions or population density. Respiration increases exponentially with temperature between 5° and 25°C, with a very high Q10 (3.94), but is not affected by salinity. At 30°C respiration is no higher than at 25°C. A high and relatively stable production efficiency (P/A) is maintained between 10 and 30°C with a maximum of 87% at 15°C; there is a stable reproductive effort (Pr/A) of about 10%. At 5°C both these ratios are zero. Data for the harpacticoid copepod Tachidius discipes, derived from the literature, show that this too has a high and stable production efficiency, which may be a characteristic of meiofaunal species in general, but in this species efficiency is relatively high at 5°C. Many features of the energy balance in D. bruciei can be related to an opportunistic mode of life.
Resumo:
The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbour processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In this manuscript we aim to provide a foundation for informed conservation and management of the deep sea by summarizing the important role of the deep sea in society.