3 resultados para emigration

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: The ability of Antarctic krill Euphausia superba Dana to withstand the overwintering period is critical to their success. Laboratory evidence suggests that krill may shrink in body length during this time in response to the low availability of food. Nevertheless, verification that krill can shrink in the natural environment is lacking because winter data are difficult to obtain. One of the few sources of winter krill population data is from commercial vessels. We examined length-frequency data of adult krill (>35 mm total body length) obtained from commercial vessels in the Scotia-Weddell region and compared our results with those obtained from a combination of science and commercial sampling operations carried out in this region at other times of the year. Our analyses revealed body-length shrinkage in adult females but not males during overwinter, based on both the tracking of modal size classes over seasons and sex-ratio patterns. Other explanatory factors, such as differential mortality, immigration and emigration, could not explain the observed differences. The same pattern was also observed at South Georgia and in the Western Antarctic Peninsula. Fitted seasonally modulated von Bertalanffy growth functions predicted a pattern of overwintering shrinkage in all body-length classes of females, but only stagnation in growth in males. This shrinkage most likely reflects morphometric changes resulting from the contraction of the ovaries and is not necessarily an outcome of winter hardship. The sex-dependent changes that we observed need to be incorporated into life cycle and population dynamic models of this species, particularly those used in managing the fishery. KEY WORDS: Southern Ocean · Population dynamics · Production · Life cycle · Fishery

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: The ability of Antarctic krill Euphausia superba Dana to withstand the overwintering period is critical to their success. Laboratory evidence suggests that krill may shrink in body length during this time in response to the low availability of food. Nevertheless, verification that krill can shrink in the natural environment is lacking because winter data are difficult to obtain. One of the few sources of winter krill population data is from commercial vessels. We examined length-frequency data of adult krill (>35 mm total body length) obtained from commercial vessels in the Scotia-Weddell region and compared our results with those obtained from a combination of science and commercial sampling operations carried out in this region at other times of the year. Our analyses revealed body-length shrinkage in adult females but not males during overwinter, based on both the tracking of modal size classes over seasons and sex-ratio patterns. Other explanatory factors, such as differential mortality, immigration and emigration, could not explain the observed differences. The same pattern was also observed at South Georgia and in the Western Antarctic Peninsula. Fitted seasonally modulated von Bertalanffy growth functions predicted a pattern of overwintering shrinkage in all body-length classes of females, but only stagnation in growth in males. This shrinkage most likely reflects morphometric changes resulting from the contraction of the ovaries and is not necessarily an outcome of winter hardship. The sex-dependent changes that we observed need to be incorporated into life cycle and population dynamic models of this species, particularly those used in managing the fishery. KEY WORDS: Southern Ocean · Population dynamics · Production · Life cycle · Fishery