4 resultados para elliptical human detection

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transmission of water-borne pathogens typically occurs by a faecal–oral route, through inhalation of aerosols, or by direct or indirect contact with contaminated water. Previous molecular-based studies have identified viral particles of zoonotic and human nature in surface waters. Contaminated water can lead to human health issues, and the development of rapid methods for the detection of pathogenic microorganisms is a valuable tool for the prevention of their spread. The aims of this work were to determine the presence and identity of representative human pathogenic enteric viruses in water samples from six European countries by quantitative polymerase chain reaction (q-PCR) and to develop two quantitative PCR methods for Adenovirus 41 and Mammalian Orthoreoviruses. A 2-year survey showed that Norovirus, Mammalian Orthoreovirus and Adenoviruses were the most frequently identified enteric viruses in the sampled surface waters. Although it was not possible to establish viability and infectivity of the viruses considered, the detectable presence of pathogenic viruses may represent a potential risk for human health. The methodology developed may aid in rapid detection of these pathogens for monitoring

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transmission of water-borne pathogens typically occurs by a faecal–oral route, through inhalation of aerosols, or by direct or indirect contact with contaminated water. Previous molecular-based studies have identified viral particles of zoonotic and human nature in surface waters. Contaminated water can lead to human health issues, and the development of rapid methods for the detection of pathogenic microorganisms is a valuable tool for the prevention of their spread. The aims of this work were to determine the presence and identity of representative human pathogenic enteric viruses in water samples from six European countries by quantitative polymerase chain reaction (q-PCR) and to develop two quantitative PCR methods for Adenovirus 41 and Mammalian Orthoreoviruses. A 2-year survey showed that Norovirus, Mammalian Orthoreovirus and Adenoviruses were the most frequently identified enteric viruses in the sampled surface waters. Although it was not possible to establish viability and infectivity of the viruses considered, the detectable presence of pathogenic viruses may represent a potential risk for human health. The methodology developed may aid in rapid detection of these pathogens for monitoring

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oceans and coastal seas provide mankind with many benefits including food for around a third of the global population, the air that we breathe and our climate system which enables habitation of much of the planet. However, the converse is that generation of natural events (such as hurricanes, severe storms and tsunamis) can have devastating impacts on coastal populations, while pollution of the seas by pathogens and toxic waste can cause illness and death in humans and animals. Harmful effects from biogenic toxins produced by algal blooms (HABs) and from the pathogens associated with microbial pollution are also a health hazard in seafood and from direct contact with water. The overall global burden of human disease caused by sewage pollution of coastal waters has been estimated at 4 million lost person-years annually. Finally, the impacts of all of these issues will be exacerbated by climate change. A holistic systems approach is needed. It must consider whole ecosystems, and their sustainability, such as integrated coastal zone management, is necessary to address the highly interconnected scientific challenges of increased human population pressure, pollution and over-exploitation of food (and other) resources as drivers of adverse ecological, social and economic impacts. There is also an urgent and critical requirement for effective and integrated public health solutions to be developed through the formulation of politically and environmentally meaningful policies. The research community required to address "Oceans & Human Health" in Europe is currently very fragmented, and recognition by policy makers of some of the problems, outlined in the list of challenges above, is limited. Nevertheless, relevant key policy issues for governments worldwide include the reduction of the burden of disease (including the early detection of emerging pathogens and other threats) and improving the quality of the global environment. Failure to effectively address these issues will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on "Oceans and Human Health" has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current knowledge about the spread of pathogens in aquatic environments is scarce probably because bacteria, viruses, algae and their toxins tend to occur at low concentrations in water, making them very difficult to measure directly. The purpose of this study was the development and validation of tools to detect pathogens in freshwater systems close to an urban area. In order to evaluate anthropogenic impacts on water microbiological quality, a phylogenetic microarray was developed in the context of the EU project µAQUA to detect simultaneously numerous pathogens and applied to samples from two different locations close to an urban area located upstream and downstream of Rome in the Tiber River. Furthermore, human enteric viruses were also detected. Fifty liters of water were collected and concentrated using a hollow-fiber ultrafiltration approach. The resultant concentrate was further size-fractionated through a series of decreasing pore size filters. RNA was extracted from pooled filters and hybridized to the newly designed microarray to detect pathogenic bacteria, protozoa and toxic cyanobacteria. Diatoms as indicators of the water quality status, were also included in the microarray to evaluate water quality. The microarray results gave positive signals for bacteria, diatoms, cyanobacteria and protozoa. Cross validation of the microarray was performed using standard microbiological methods for the bacteria. The presence of oral-fecal transmitted human enteric-viruses were detected using q-PCR. Significant concentrations of Salmonella, Clostridium, Campylobacter and Staphylococcus as well as Hepatitis E Virus (HEV), noroviruses GI (NoGGI) and GII (NoGII) and human adenovirus 41 (ADV 41) were found in the Mezzocammino site, whereas lower concentrations of other bacteria and only the ADV41 virus was recovered at the Castel Giubileo site. This study revealed that the pollution level in the Tiber River was considerably higher downstream rather than upstream of Rome and the downstream location was contaminated by emerging and re-emerging pathogens.