24 resultados para element cycling
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The controls on the 'Redfield' N:P stoichiometry of marine phytoplankton and hence the N:P ratio of the deep ocean remain incompletely understood. Here, we use a model for phytoplankton ecophysiology and growth, based on functional traits and resource-allocation trade-offs, to show how environmental filtering, biotic interactions, and element cycling in a global ecosystem model determine phytoplankton biogeography, growth strategies and macromolecular composition. Emergent growth strategies capture major observed patterns in marine biomes. Using a new synthesis of experimental RNA and protein measurements to constrain per-ribosome translation rates, we determine a spatially variable lower limit on adaptive rRNA:protein allocation and hence on the relationship between the largest cellular P and N pools. Comparison with the lowest observed phytoplankton N:P ratios and N:P export fluxes in the Southern Ocean suggests that additional contributions from phospholipid and phosphorus storage compounds play a fundamental role in determining the marine biogeochemical cycling of these elements.
Resumo:
Monitoring of Phaeocystis since 1948 during the Continuous Plankton Recorder survey indicates that over the last 5.5 decades the distribution of its colonies in the North Atlantic Ocean was not restricted to neritic waters: occurrence was also recorded in the open Atlantic regions sampled, most frequently in the spring. Apparently, environmental conditions in open ocean waters, also those far oVshore, are suitable for complete lifecycle development of colonies (the only stage recorded in the survey). In the North Sea the frequency of occurrence was also highest in spring. Its southeastern part was the Phaeocystis abundance hotspot of the whole area covered by the survey. Frequency was especially high before the 1960s and after the 1980s, i.e., in the periods when anthropogenic nutrient enrichment was relatively low. Changes in eutrophication have obviously not been a major cause of long-term Phaeocystis variation in the southeastern North Sea, where total phytoplankton biomass was related signiWcantly to river discharge. Evidence is presented for the suggestion that Phaeocystis abundance in the southern North Sea is to a large extent determined by the amount of Atlantic Ocean water Xushed in through the Dover Strait. Since Phaeocystis plays a key role in element Xuxes relevant to climate the results presented here have implications for biogeochemical models of cycling of carbon and sulphur. Sea-to-air exchange of CO2 and dimethyl sulphide (DMS) has been calculated on the basis of measurements during single-year cruises. The considerable annual variation in phytoplankton and in its Phaeocystis component reported here does not warrant extrapolation of such figures.