6 resultados para dynamic time warping (DTW)

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal zooplankton have been investigated since 1984 at a Long Term Ecological Research station MC (LTER-MC) in the inner Gulf of Naples (Tyrrhenian Sea, Western Mediterranean). The sampling site, located between the littoral and the open sea systems, has very active hydrography that affects plankton communities. The present work was aimed at establishing whether, in such a dynamic and variable environment, species associations and homogeneous periods could be identified as characteristic and stable features of the mesozooplankton over the period 1984–2006. Hierarchical clustering was applied to assess species associations based on a matrix of similarities between species (R-mode), and homogeneous periods based on a matrix of similarities between observations (Q-mode). The Indicator Value index [IndVal, Dufrene and Legendre (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366] was calculated to identify species characterizing each period. Five taxonomic groups with well-defined composition and abundance were identified as robust associations that likely reflect different modes of community functioning. The temporal course of these associations was largely shaped by strong seasonal forcing comprising both physical and biological (e.g. trophic) signals. These associations persisted over the long term, thus indicating some stable characters in the Naples zooplankton time-series, providing evidence of resilience in communities in highly variable coastal conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies relating biodiversity to ecosystem processes typically do not take into account changes in biodiversity through time. Marine systems are highly dynamic, with biodiversity changing at diel, seasonal and inter-decadal timescales. We examined the dynamics of biodiversity in the Gulf of Maine pelagic zooplankton community. Taxonomic data came from the Gulf of Maine continuous plankton recorder (CPR) transect, spanning the years 1961–2006. The CPR transect also contains coincident information on temperature and phytoplankton biomass (measured by the phytoplankton color index). Taxonomic richness varied at all timescales considered. The relationships between temperature and richness, and between phytoplankton and richness, also depended on temporal scale. The temperature–richness relationship was monotonic at the multi-decadal scale, and tended to be hump-shaped at finer scales; the productivity–richness relationship was hump-shaped at the multi-decadal scale, and tended to be monotonic at finer scales. Seasonal biodiversity dynamics were linked to temperature; inter-decadal biodiversity dynamics were linked to phytoplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel techniques have been developed for increasing the value of cloud-affected sequences of Advanced Very High Resolution Radiometer (AVHRR) sea-surface temperature (SST) data and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean colour data for visualising dynamic physical and biological oceanic processes such as fronts, eddies and blooms. The proposed composite front map approach is to combine the location, strength and persistence of all fronts observed over several days into a single map, which allows intuitive interpretation of mesoscale structures. This method achieves a synoptic view without blurring dynamic features, an inherent problem with conventional time-averaging compositing methods. Objective validation confirms a significant improvement in feature visibility on composite maps compared to individual front maps. A further novel aspect is the automated detection of ocean colour fronts, correctly locating 96% of chlorophyll fronts in a test data set. A sizeable data set of 13,000 AVHRR and 1200 SeaWiFS scenes automatically processed using this technique is applied to the study of dynamic processes off the Iberian Peninsula such as mesoscale eddy generation, and many additional applications are identified. Front map animations provide a unique insight into the evolution of upwelling and eddies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calanus helgolandicus is a key copepod of the NE Atlantic and fringing shelves, with a distribution that is expanding northwards with oceanic warming. The Plymouth L4 site has warmed over the past 25-years, and experiences large variations in the timing and availability of food for C. helgolandicus. Here we examine the degree to which these changes translate into variation in reproductive output and subsequently C. helgolandicus population size. Egg production rates (eggs female−1 day−1) were maximal in the spring to early-summer period of diatom blooms and high ciliate abundance, rather than during the equally large autumn blooms of autotrophic dinoflagellates. Egg hatch success was lower in spring however, with a greater proportion of naupliar deformities then also. Both the timing and the mean summer abundance of C. helgolandicus (CI–CVI) reflected those of spring total reproductive output. However this relationship was driven by inter-annual variability in female abundance and not that of egg production per female, which ranged only two-fold. Winter abundance of C. helgolandicus at L4 was much more variable than abundance in other seasons, and reflected conditions from the previous growing season. However, these low winter abundances had no clear carry-over signal to the following season’s population size. Overall, the C. helgolandicus population appears to be surprisingly resilient at this dynamic, inshore site, showing no long-term phenology shift and only a four-fold variation in mean abundance between years. This dampening effect may reflect a series of mortality sources, associated with the timing of stratification in the early part of the season, likely affecting egg sinking and loss, plus intense, density-dependent mortality of early stages in mid-summer likely through predation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.