3 resultados para driving forces

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A modelling scheme is described which uses satellite retrieved sea-surface temperature and chlorophyll-a to derive monthly zooplankton biomass estimates in the eastern North Atlantic; this forms part of a bio-physical model of inter-annual variations in the growth and survival of larvae and post-larvae of mackerel (Scomber scombrus). The temperature and chlorophyll data are incorporated first to model copepod (Calanus) egg production rates. Egg production is then converted to available food using distribution data from the Continuous Plankton Recorder (CPR) Survey, observed population biomass per unit daily egg production and the proportion of the larval mackerel diet comprising Calanus. Results are validated in comparison with field observations of zooplankton biomass. The principal benefit of the modelling scheme is the ability to use the combination of broad scale coverage and fine scale temporal and spatial variability of satellite data as driving forces in the model; weaknesses are the simplicity of the egg production model and the broad-scale generalizations assumed in the raising factors to convert egg production to biomass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present investigation reviews published data on the feeding rates and prey selection of Oithona similis females, Calanus finmarchicus nauplii and females in the Irminger Sea in April/May and July/August 2002. Our aim was to examine how the feeding rates and prey selection of these three copepod stages respond to concomitant changes in microplankton community composition and prey abundance. Copepods typically ingested prey overall according to its ambient concentration although significant species and stage-specific differences in prey-type ingestion and selection were apparent. Despite being of comparable weight, the ingestion rates of C. finmarchicus nauplii were always higher than those of the O. similis females. Moreover, C. finmarchicus nauplii and O. similis females fed preferentially on diatoms and ciliates respectively, whereas adult female C. finmarchicus showed limited prey selectivity. Copepod grazing impact on total and on ciliates/dinoflagellates standing stock was <0.5 and <2%, respectively. We attribute this result to a combination of low grazing rates, low copepod abundance and low microplankton biomass, all of which are indicative of the non-bloom conditions under which these experiments were conducted. The differences in copepod feeding rates and prey selection we report reflect species and stage-specific eco-physiological adaptations, which may act as important driving forces for marine ecosystem structuring and functioning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite increased research over the last decade, diversity patterns in Antarctic deep-sea benthic taxa and their driving forces are only marginally known. Depth-related patterns of diversity and distribution of isopods and bivalves collected in the Atlantic sector of the Southern Ocean are analysed. The data, sampled by epibenthic sledge at 40 deep-sea stations from the upper continental slope to the hadal zone (774 – 6348 m) over a wide area of the Southern Ocean, comprises 619 species of isopods and 81 species of bivalves,. There were more species of isopods than bivalves in all samples, and species per station varied from 2 to 85 for isopods and from 0 to 18 for bivalves. Most species were rare, with 72% of isopod species restricted to one or two stations, and 45% of bivalves. Among less-rare species bivalves tended to have wider distributions than isopods. The species richness of isopods varied with depth, showing a weak unimodal curve with a peak at 2000 – 4000 m, while the richness of bivalves did not. Multivariate analyses indicate that there are two main assemblages in the Southern Ocean, one shallow and one deep. These overlap over a large depth-range (2000 – 4000 m). Comparing analyses based on the Sørensen resemblance measure (presence/absence) and Γ+ (presence/absence incorporating relatedness among species) indicates that rare species tend to have other closely related species within the same depth band. Analysis of relatedness among species indicates that the taxonomic variety of bivalves tends to decline at depth, whereas that of isopods is maintained. This, it is speculated, may indicate that the available energy at depth is insufficient to maintain a range of bivalve life-history strategies