9 resultados para drinking water quality
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The Channel Catchments Cluster (3C) aims to capitalise on outputs from some of the recent projects funded through the INTERREG IVa France (Channel) England programme. The river catchment basins draining into the Channel region drain an area of 137,000km2 and support a human population of over 19M. Throughout history, these catchments, rivers and estuaries have been centres of habitation, developed through commerce and industry, providing transport links to hinterland areas. These catchments also provide drinking water and food through provision of agriculture, fisheries and aquaculture. In addition, many parts of the region are also economically important now for the tourism and leisure industries. Consequently, there is a need to manage the balance of these many and varied human activities within the catchments, rivers, estuaries and marine areas to ensure that they are maintained or restored to good environmental condition . This document highlights some of the recent work carried out by projects within the INTERREG IVa programme that provide tools and techniques to assist in the achievement of these goals.
Resumo:
The honeycomb reef worm Sabellaria alveolata is recognised as being an important component of intertidal communities. It is a priority habitat within the UK Biodiversity Action Plan and as a biogenic reef forming species is covered by Annex 1 of the EC habitats directive. S. alveolata has a lusitanean (southern) distribution, being largely restricted to the south and west coasts of England. A broad-scale survey of S. alveolata distribution along the north-west coasts was undertaken in 2003/2004. These records were then compared with previous distribution records, mainly those collected by Cunningham in 1984. More detailed mapping was carried out at Hilbre Island at the mouth of the River Dee, due to recent reports that S. alveolata had become re-established there after a long absence.
Resumo:
Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008–2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.
Resumo:
The use of in situ measurements is essential in the validation and evaluation of the algorithms that provide coastal water quality data products from ocean colour satellite remote sensing. Over the past decade, various types of ocean colour algorithms have been developed to deal with the optical complexity of coastal waters. Yet there is a lack of a comprehensive intercomparison due to the availability of quality checked in situ databases. The CoastColour Round Robin (CCRR) project, funded by the European Space Agency (ESA), was designed to bring together three reference data sets using these to test algorithms and to assess their accuracy for retrieving water quality parameters. This paper provides a detailed description of these reference data sets, which include the Medium Resolution Imaging Spectrometer (MERIS) level 2 match-ups, in situ reflectance measurements, and synthetic data generated by a radiative transfer model (HydroLight). These data sets, representing mainly coastal waters, are available from doi:10.1594/PANGAEA.841950. The data sets mainly consist of 6484 marine reflectance (either multispectral or hyperspectral) associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: total suspended matter (TSM) and chlorophyll a (CHL) concentrations, and the absorption of coloured dissolved organic matter (CDOM). Inherent optical properties are also provided in the simulated data sets (5000 simulations) and from 3054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three data sets are compared. Match-up and in situ sites where deviations occur are identified. The distributions of the three reflectance data sets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.