6 resultados para degradation of the Semi-arid
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0 degrees and 90 degrees W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2 degrees C per decade, and projections suggest that further widespread warming of 0.27 degrees to 1.08 degrees C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.
Resumo:
The EU Marine Strategy Framework Directive (MSFD) sets out a plan of action relating to marine environmental policy and in particular to achieving ‘good environmental status’ (GES) in European marine waters by 2020. Article 8.1 (c) of the Directive calls for ‘an economic and social analysis of the use of those waters and of the cost of degradation of the marine environment’. The MSFD is ‘informed’ by the Ecosystem Approach to management, with GES interpreted in terms of ecosystem functioning and services provision. Implementation of the Ecosystem Approach is expected to be by adaptive management policy and practice. The initial socio-economic assessment was made by maritime EU Member States between 2011 and 2012, with future updates to be made on a regular basis. For the majority of Member States, this assessment has led to an exercise combining an analysis of maritime activities both at national and coastal zone scales, and an analysis of the non-market value of marine waters. In this paper we examine the approaches taken in more detail, outline the main challenges facing the Member States in assessing the economic value of achieving GES as outlined in the Directive and make recommendations for the theoretically sound and practically useful completion of the required follow-up economic assessments specified in the MSFD.
Resumo:
The EU Marine Strategy Framework Directive (MSFD) sets out a plan of action relating to marine environmental policy and in particular to achieving ‘good environmental status’ (GES) in European marine waters by 2020. Article 8.1 (c) of the Directive calls for ‘an economic and social analysis of the use of those waters and of the cost of degradation of the marine environment’. The MSFD is ‘informed’ by the Ecosystem Approach to management, with GES interpreted in terms of ecosystem functioning and services provision. Implementation of the Ecosystem Approach is expected to be by adaptive management policy and practice. The initial socio-economic assessment was made by maritime EU Member States between 2011 and 2012, with future updates to be made on a regular basis. For the majority of Member States, this assessment has led to an exercise combining an analysis of maritime activities both at national and coastal zone scales, and an analysis of the non-market value of marine waters. In this paper we examine the approaches taken in more detail, outline the main challenges facing the Member States in assessing the economic value of achieving GES as outlined in the Directive and make recommendations for the theoretically sound and practically useful completion of the required follow-up economic assessments specified in the MSFD.
Resumo:
Variations in the concentrations and microheterotrophic degradation rates of selected Polycyclic Aromatic Hydrocarbons (PAH) in the water column of the Tamar Estuary were investigated in relation to the major environmental variables. Concentrations of individual PAH varied typically between i and 50 ng l−1 Based on their observed environmental behaviour the PAH appeared divisible into two groupings: (1) low molecular weight PAH incorporating naphthalene, phenanthrene and anthracence and (a) the larger molecular weight homologues (fluoranthene, pyrene, chrysene, benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)-pyrene). Group 1 PAH showed a complex distribution throughout the estuary with no significant correlations with either salinity or suspended particulates. Based on their relatively low particle affinity and high water solubilities and vapour pressures, volatilization is proposed as an important process in determining their fate. Microheterotrophic turnover times of naphthalene varied between x and 30 days, and were independent of suspended solids with maximum degradation rates located in the central and urban regions of the Estuary. When compared with the flushing times for the Tamar (3–5 days), it is probable that heterotrophic activity is important in the removal of naphthalene (and possibly the other Group 1 PAH) from the estuarine environment. In contrast Group 2 PAH concentrations exhibited highly significant correlations with suspended particulates. Highest concentrations occurred at the turbidity maximum, with a secondary concentration maximum localized to the industrialized portion of the estuary and associated with anthropogenic inputs. Laboratory degradation studies of benzo(a)pyrene in water samples taken from the estuary showed turnover times for the compound of between 2000 and 9000 days. Degradation rates correlated positively with suspended solids. The high particulate affinity and microbial refractivity of Group 2 PAH indicate sediment burial as the principal tate of these PAH in the Tamar Estuary. Estuarine sediments contained typically 50–1500 ng g−1 dry weight of individual PAH which were comparable to the levels of Group 2 PAH associated with the suspended particulates. Highest concentrations occurred at the riverine end of the estuary resulting from unresolved inputs in the catchment. Subsequent dilution by less polluted marine sediments together with slow degradation results in a seaward trend of decreasing concentrations. However, there is a secondary maximum of PAH superimposed on this trend which is associated with urban Plymouth.