8 resultados para current depth of recession
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.
Resumo:
During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.
Resumo:
The relationship between date of first description and size, geographic range and depth of occurrence is investigated for 18 orders of marine holozooplankton (comprising over 4000 species). Results of multiple regression analyses suggest that all attributes are linked, which reflects the complex interplay between them. Partial correlation coefficients suggest that geographic range is the most important predictor of description date, and shows an inverse relationship. By contrast, size is generally a poor indicator of description date, which probably mirrors the size-independent way in which specimens are collected, though there is clearly a positive relationship between both size and depth (for metabolic/trophic reasons), and size and geographic range. There is also a positive relationship between geographic range and depth that probably reflects the near constant nature of the deep-water environment and the wide-ranging currents to be found there. Although we did not explicitly incorporate either abundance or location into models predicting the date of first description, neither should be ignored.
Resumo:
The purpose of this report is to give an overview of plankton ecology in the North Sea, and the processes that effect it, as derived from current research. The Sir Alister Hardy Foundation has extensive data for the North Sea area, and other sources have also been used to provide information for this report. Shortfalls in current research have also been highlighted. The information contained herein is to be contributed towards an information base for the Strategic Environmental Assessment. The North Sea is an extension of the North Atlantic that has an area of 574,980 km2. The deepest area is off the coast of Norway (660m), with a number of shallow areas, such as the Dogger Bank (15m). The North Sea represents a large source of hydrocarbons that have been exploited since the early 1970s. The aim of this study is to provide the Department of Trade and Industry with biological data on the planktonic community of the North Sea, as a contribution towards the Strategic Environmental Assessment (SEA 2). An overview of phyto- and zoo- plankton community composition, plankton blooms, Calanus, mero-, pico- and megaplankton, sensitivity to disturbance / contamination, phytodetritus and vertical fluxes and the resting stages of phytoplankton is made using the results of the survey database. Additional published literature has also been used, and gaps in available data have been highlighted. 1.3 The Continuous Plankton Recorder (CPR) survey provides a unique long-term dataset of plankton abundance in the North Atlantic and North Sea (Warner and Hays 1994). The survey has been running for almost 70 years, using ‘ships of opportunity’ to tow CPRs on regular, and incidental routes, sampling at a depth of 10 m. Each sample represents 18 km of tow and approximately 3 m3 of filtered seawater. Over 400 taxa of plankton are routinely identified by a team of taxonomists. The samples are also compared to colour charts to give an indication of ‘greenness’, which provides a visual index of chlorophyll value. CPRs have been towed for over 4 million nautical miles, accumulating almost 200,000 samples. The design of the CPR has remained virtually unchanged since sampling started, thus providing a consistency of sampling that provides good historical comparisons. By systematically monitoring the plankton over a period, changes in abundance and long term trends can be distinguished. From this baseline data, inferences can be made, particularly concerning climate change and potentialanthropogenic impacts.
Resumo:
Human activities within the marine environment give rise to a number of pressures on seabed habitats. Improved understanding of the sensitivity of subtidal sedimentary habitats is required to underpin the management advice provided for Marine Protected Areas, as well as supporting other UK marine monitoring and assessment work. The sensitivity of marine sedimentary habitats to a range of pressures induced by human activities has previously been systematically assessed using approaches based on expert judgement for Defra Project MB0102 (Tillin et al. 2010). This previous work assessed sensitivity at the level of the broadscale habitat and therefore the scores were typically expressed as a range due to underlying variation in the sensitivity of the constituent biotopes. The objective of this project was to reduce the uncertainty around identifying the sensitivity of selected subtidal sedimentary habitats by assessing sensitivity, at a finer scale and incorporating information on the biological assemblage, for 33 Level 5 circalittoral and offshore biotopes taken from the Marine Habitat Classification of Britain and Ireland (Connor et al. 2004). Two Level 6 sub-biotopes were also included in this project as these contain distinctive characterising species that differentiate them from the Level 5 parent biotope. Littoral, infralittoral, reduced and variable salinity sedimentary habitats were excluded from this project as the scope was set for assessment of circalittoral and offshore sedimentary communities. This project consisted of three Phases. • Phase 1 - define ecological groups based on similarities in the sensitivity of characterising species from the Level 5 and two Level 6 biotopes described above. • Phase 2 - produce a literature review of information on the resilience and resistance of characterising species of the ecological groups to pressures associated with activities in the marine environment. • Phase 3 - to produce sensitivity assessment ‘proformas’ based on the findings of Phase 2 for each ecological group. This report outlines results of Phase 2. The Tillin et al., (2010) sensitivity assessment methodology was modified to use the best available scientific evidence that could be collated within the project timescale. An extensive literature review was compiled, for peer reviewed and grey literature, to examine current understanding about the effects of pressures from human activities on circalittoral and offshore sedimentary communities in UK continental shelf waters, together with information on factors that contribute to resilience (recovery) of marine species. This review formed the basis of an assessment of the sensitivity of the 16 ecological groups identified in Phase 1 of the project (Tillin & Tyler-Walters 2014). As a result: • the state of knowledge on the effects of each pressure on circalittoral and offshore benthos was reviewed; • the resistance, resilience and, hence, sensitivity of sixteen ecological groups, representing 96 characteristic species, were assessed for eight separate pressures; • each assessment was accompanied by a detailed review of the relevant evidence; Assessing the sensitivity of subtidal sedimentary habitats to pressures associated with human activities • knowledge gaps and sources of uncertainty were identified for each group; • each assessment was accompanied by an assessment of the quality of the evidence, its applicability to the assessment and the degree of concordance (agreement) between the evidence, to highlight sources of uncertainty as an assessment of the overall confidence in the sensitivity assessment, and finally • limitations in the methodology and the application of sensitivity assessments were outlined. This process demonstrated that the ecological groups identified in Phase 1 (Tillin & Tyler-Walters 2014) were viable groups for sensitivity assessment, and could be used to represent the 33 circalittoral and offshore sediments biotopes identified at the beginning of the project. The results of the sensitivity assessments show: • the majority of species and hence ecological groups in sedimentary habitats are sensitive to physical change, especially loss of habitat and sediment extraction, and change in sediment type; • most sedimentary species are sensitive to physical damage, e.g. abrasion and penetration, although deep burrowing species (e.g. the Dublin Bay prawn - Nephrops norvegicus and the sea cucumber - Neopentadactyla mixta) are able to avoid damaging effects to varying degrees, depending on the depth of penetration and time of year; • changes in hydrography (wave climate, tidal streams and currents) can significantly affect sedimentary communities, depending on whether they are dominated by deposit, infaunal feeders or suspension feeders, and dependant on the nature of the sediment, which is itself modified by hydrography and depth; • sedentary species and ecological groups that dominate the top-layer of the sediment (either shallow burrowing or epifaunal) remain the most sensitive to physical damage; • mobile species (e.g. interstitial and burrowing amphipods, and perhaps cumaceans) are the least sensitive to physical change or damage, and hydrological change as they are already adapted to unstable, mobile substrata; • sensitivity to changes in organic enrichment and hence oxygen levels, is variable between species and ecological groups, depending on the exact habitat preferences of the species in question, although most species have at least a medium sensitivity to acute deoxygenation; • there is considerable evidence on the effects of bottom-contact fishing practices and aggregate dredging on sedimentary communities, although not all evidence is directly applicable to every ecological group; • there is lack of detailed information on the physiological tolerances (e.g. to oxygenation, salinity, and temperature), habitat preferences, life history and population dynamics of many species, so that inferences has been made from related species, families, or even the same phylum; • there was inadequate evidence to assess the effects of non-indigenous species on most ecological groups, and Assessing the sensitivity of subtidal sedimentary habitats to pressures associated with human activities • there was inadequate evidence to assess the effects of electromagnetic fields and litter on any ecological group. The resultant report provides an up-to-date review of current knowledge about the effects of pressures resulting from human activities of circalittoral and offshore sedimentary communities. It provides an evidence base to facilitate and support the provision of management advice for Marine Protected Areas, development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. However, such a review will require at least annual updates to take advantage of new evidence and new research as it becomes available. Also further work is required to test how ecological group assessments are best combined in practice to advise on the sensitivity of a range of sedimentary biotopes, including the 33 that were originally examined.