3 resultados para cultivated tomato
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The hydrothermal liquefaction(HTL) of algal biomass is a promising route to viable second generation biofuels. In this investigation HTL was assessed for the valorisation of algae used in the remediation of acid mine drainage (AMD). Initially the HTL process was evaluated using Arthrospira platensis (Spirulina) with additional metal sulphates to simulate metal remediation. Optimised conditions were then used to process a natural algal community (predominantly Chlamydomonas sp.) cultivated under two scenarios: high uptake and low uptake of metals from AMD. High metal concentrations appear to catalyse the conversion to bio-oil, and do not significantly affect the heteroatom content or higher heating value of the bio-oil produced. The associated metals were found to partition almost exclusively into the solid residue, favourable for potential metal recovery. High metal loadings also caused partitioning of phosphates from the aqueous phase to the solid phase, potentially compromising attempts to recycle process water as a growth supplement. HTL was therefore found to be a suitable method of processing algae used in AMD remediation, producing a crude oil suitable for upgrading into hydrocarbon fuels, an aqueous and gas stream suitable for supplementing the algal growth and the partitioning of most contaminant metals to the solid residue where they would be readily amenable for recovery and/or disposal.
Resumo:
The hydrothermal liquefaction(HTL) of algal biomass is a promising route to viable second generation biofuels. In this investigation HTL was assessed for the valorisation of algae used in the remediation of acid mine drainage (AMD). Initially the HTL process was evaluated using Arthrospira platensis (Spirulina) with additional metal sulphates to simulate metal remediation. Optimised conditions were then used to process a natural algal community (predominantly Chlamydomonas sp.) cultivated under two scenarios: high uptake and low uptake of metals from AMD. High metal concentrations appear to catalyse the conversion to bio-oil, and do not significantly affect the heteroatom content or higher heating value of the bio-oil produced. The associated metals were found to partition almost exclusively into the solid residue, favourable for potential metal recovery. High metal loadings also caused partitioning of phosphates from the aqueous phase to the solid phase, potentially compromising attempts to recycle process water as a growth supplement. HTL was therefore found to be a suitable method of processing algae used in AMD remediation, producing a crude oil suitable for upgrading into hydrocarbon fuels, an aqueous and gas stream suitable for supplementing the algal growth and the partitioning of most contaminant metals to the solid residue where they would be readily amenable for recovery and/or disposal.
Resumo:
A pedunculate barnacle, Leucolepas longa, occurs in densities over 1000 individuals m[minus sign]2 on the summit of a small seamount near New Ireland, Papua New Guinea. Most of the population grows on vesicomyid clams projecting from sulphide-rich sediments, or on their dead shells, but the barnacle also settles on rock and on tubes of a vestimentiferan. Collections of several hundred barnacles allowed comparison of population and reproductive characteristics. The barnacle is a suspension feeder with a lightly-armoured stalk that can grow to 40 cm above the bottom. Growth appears to be rapid and both reproduction and recruitment are continuous. The barnacles brood egg masses within the capitular chamber and 46% of one sample was brooding. Lecithotrophic nauplii released upon retrieval to the surface were cultivated for 45 days. Metamorphosis to Stage IV yielded an actively swimming larva about 1 mm long overall, which still contained lipid reserves, indicating capacity for wide dispersal