11 resultados para covariance estimator
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
We present here vertical fluxes of oxygenated volatile organic compounds (OVOCs) measured with eddy covariance (EC) during the period of March to July 2012 near the southwest coast of the United Kingdom. The performance of the proton-transfer-reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Observed mixing ratios and fluxes of OVOCs (specifically methanol, acetaldehyde, and acetone) vary significantly with time of day and wind direction. Higher mixing ratios and fluxes of acetaldehyde and acetone are found in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol mixing ratio and flux do not demonstrate consistent diel variability, suggesting sources in addition to plants. We estimate air-sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1 sigma) mixing ratio of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction out-paces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime mixing ratios of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long-distance transport, respectively.
Resumo:
Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958–2003, those of nutrients start in 1980. In both regions, the period from 1989 to 2001 identified in principal component 1 had warmer surface waters, higher Atlantic inflow and stronger winds, than the periods before or after. However, it was preceded by a regime shift in both open (PC2) and coastal (PC3) waters during 1977 towards more hours of sunlight and higher water temperature, which lasted until 1997. The relative influence of nutrient availability and climatic forcing differed between open and coastal North Sea regions. Inter-annual variability in phytoplankton dynamics of the open North Sea was primarily regulated by climatic forcing, specifically by sea surface temperature, Atlantic inflow and co-varying wind stress and NAO. Coastal phytoplankton variability, however, was regulated by insolation and sea surface temperature, as well as Si availability, but not by N or P. Regime shifts in principal components of hydrographic and climatic variables (explaining 55 and 61% of the variance in coastal and open water variables) were detected using Rodionov's sequential t-test. These shifts in hydroclimatic variables which occurred around 1977, 1989, 1997 and 2001, were synchronized in open and coastal waters, and were tracked by open water chlorophyll and copepods, but not by coastal plankton. North–central–south or open-coastal spatial breakdowns of the North Sea explained similar amounts of variability in most ecosystem indicators with the exception of diatom abundance and chlorophyll concentration, which were clearly better explained using the open-coastal configuration.
Resumo:
The performance of four common estimators of diversity are investigated using calanoid copepod data from the Continuous Plankton Recorder (CPR) survey. The region of the North Atlantic and the North Sea was divided into squares of 400 nautical miles for each 2-month period. For each 144 possible cases, Pielou's pooled quadrat method was performed with the aims of determining asymptotic diversity and investigating the CPR sample-size dependence of diversity estimators. It is shown that the performance of diversity indices may greatly vary in space and time (at a seasonal scale). This dependence is more pronounced in higher diverse environments and when the sample size is small. Despite results showing that all estimators underestimate the `actual' diversity, comparison of sites remained reliable from a few pooled CPR samples. Using more than one CPR sample, the Gini coefficient appears to be a better diversity estimator than any other indices and spatial or temporal comparisons are highly satisfactory. In situations where comparative studies are needed but only one CPR sample is available, taxonomic richness was the preferred method of estimating diversity. Recommendations are proposed to maximise the efficiency of diversity estimations with the CPR data.
Resumo:
The consequences for pelagic communities of warming trends in mid and high latitude ocean regions could be substantial, but their magnitude and trajectory are not yet known. Environmental changes predicted by climate models (and beginning to be confirmed by observations) include warming and freshening of the upper ocean and reduction in the extent and duration of ice cover. One way to evaluate response scenarios is by comparing how "similar" zooplankton communities have differed among years and/or locations with differing temperature. The subarctic Pacific is a strong candidate for such comparisons, because the same mix of zooplankton species dominates over a wide range of temperature climatologies, and observations have spanned substantial temperature variability at interannual-to-decadal time scales. In this paper, we review and extend copepod abundance and phenology time series from net tow and Continuous Plankton Recorder surveys in the subarctic Northeast Pacific. The two strongest responses we have observed are latitudinal shifts in centers of abundance of many species (poleward under warm conditions), and changes in the life cycle timing of Neocalanus plumchrus in both oceanic and coastal regions (earlier by several weeks in warm years and at warmer locations). These zooplankton data, plus indices of higher trophic level responses such as reproduction, growth and survival of pelagic fish and seabirds, are all moderately-to-strongly intercorrelated (vertical bar r vertical bar = 0.25-0.8) with indices of local and basin-scale temperature anomalies. A principal components analysis of the normalized anomaly time series from 1979 to 2004 shows that a single "warm-and-low-productivity" vs. "cool-and-high-productivity" component axis accounts for over half of the variance/covariance. Prior to 1990, the scores for this component were negative ("cool" and "productive") or near zero except positive in the El Nino years 1983 and 1987. The scores were strongly and increasingly positive ("warm" and "low productivity") from 1992 to 1998; negative from 1999 to 2002; and again increasingly positive from 2003-present. We suggest that, in strongly seasonal environments, anomalously high temperature may provide misleading environmental cues that contribute to timing mismatch between life history events and the more-nearly-fixed seasonality of insolation, stratification, and food supply. Crown Copyright (c) 2007 Published by Elsevier Ltd. All rights reserved.
Resumo:
Data on the abundance and biomass of zooplankton off the northwestern Portuguese coast, separately estimated with a Longhurst-Hardy Plankton Recorder (LHPR) and a Bongo net, were analysed to assess the comparative performance of the samplers. Zooplankton was collected along four transects perpendicular to the coast, deployments alternating between samplers. Total zooplankton biomass measured using the LHPR was significantly higher than that using the Bongo net. Apart from Appendicularia and Cladocera, abundances of other taxa (Copepoda, Mysidacea, Euphausiacea, Decapoda larvae, Amphipoda, Siphonophora, Hydromedusae, Chaetognatha and Fish eggs) were also consistently higher in the LHPR. Some of these differences were probably due to avoidance by the zooplankton of the Bongo net. This was supported by a comparative analysis of prosome length of the copepod Calanus helgolandicus sampled by the two nets that showed that Calanus in the LHPR samples were on average significantly larger, particularly in day samples. A ratio estimator was used to produce a factor to convert Bongo net biomass and abundance estimates to equate them with those taken with the LHPR. This method demonstrates how results from complementary zooplankton sampling strategies can be made more equivalent.
Resumo:
Shipboard measurements of eddy covariance dimethylsulfide (DMS) air–sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s−1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air–sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air–sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.
Resumo:
We present air-sea fluxes of oxygenated volatile organics compounds (OVOCs) quantified by eddy covariance (EC) during the Atlantic Meridional Transect cruise in 2012. Measurements of acetone, acetaldehyde, and methanol in air as well as in water were made in several different oceanic provinces and over a wide range of wind speeds (1-18 m s(-1)). The ocean appears to be a net sink for acetone in the higher latitudes of the North Atlantic but a source in the subtropics. In the South Atlantic, seawater acetone was near saturation relative to the atmosphere, resulting in essentially zero net flux. For acetaldehyde, the two-layer model predicts a small oceanic emission, which was not well resolved by the EC method. Chemical enhancement of air-sea acetaldehyde exchange due to aqueous hydration appears to be minor. The deposition velocity of methanol correlates linearly with the transfer velocity of sensible heat, confirming predominant airside control. We examine the relationships between the OVOC concentrations in air as well as in water, and quantify the gross emission and deposition fluxes of these gases.
Resumo:
Air–sea dimethylsulfide (DMS) fluxes and bulk air–sea gradients were measured over the Southern Ocean in February–March 2012 during the Surface Ocean Aerosol Production (SOAP) study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (> 15 nM). Gas transfer coefficients were considerably scattered at wind speeds above 5 m/s. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind-speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data show no obvious modification of the gas transfer–wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.
Resumo:
The air-sea fluxes of methanol and acetone were measured concurrently using a proton-transfer-reaction mass spectrometer (PTR-MS) with the eddy covariance (EC) technique during the High Wind Gas Exchange Study (HiWinGS) in 2013. The seawater concentrations of these compounds were also measured twice daily with the same PTR-MS coupled to a membrane inlet. Dissolved concentrations near the surface ranged from 7 to 28 nM for methanol and from 3 to 9 nM for acetone. Both gases were consistently transported from the atmosphere to the ocean as a result of their low sea surface saturations. The largest influxes were observed in regions of high atmospheric concentrations and strong winds (up to 25 m s(-1)). Comparison of the total air-sea transfer velocity of these two gases (K-a), along with the in situ sensible heat transfer rate, allows us to constrain the individual gas transfer velocity in the air phase (k(a)) and water phase (k(w)). Among existing parameterizations, the scaling of k(a) from the COARE model is the most consistent with our observations. The k(w) we estimated is comparable to the tangential (shear driven) transfer velocity previously determined from measurements of dimethyl sulfide. Lastly, we estimate the wet deposition of methanol and acetone in our study region and evaluate the lifetimes of these compounds in the surface ocean and lower atmosphere with respect to total (dry plus wet) atmospheric deposition.
Resumo:
We present here vertical fluxes of methanol, acetaldehyde, and acetone measured directly with eddy covariance (EC) during March to July 2012 near the southwest coast of the UK. The performance of the proton-transfer reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Concentrations and fluxes of these compounds vary significantly with time of day and wind direction. Higher values of acetaldehyde and acetone are usually observed in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol concentration and flux do not demonstrate clear diel variability, suggesting sources in addition to plants. We estimate air–sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1�) concentration of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction outpaces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime concentrations of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long distance transport, respectively.