12 resultados para controlled mobility

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A well documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During viral infection of Emiliania huxleyi, laboratory studies have shown that photo-system (PS) II efficiency declines during the days post-infection and is thought to be associated with viral-induced interruption of electron transport rates between photosystems. However,measuring the impact of viral infection on PSII function in E. huxleyi populations from natural,taxonomically diverse phytoplankton communities is difficult, and whether this phenomenon occurs in nature is presently unknown. Here, chlorophyll fluorescence analysis was used to assess changes in PSII efficiency throughout an E. huxleyi bloom during a mesocosm experiment off the coast of Norway. Specifically, we aimed to determine whether a measurable suppression of the efficiency of PSII photochemistry could be observed due to viral infection of the natural E. huxleyi populations. During the major infection period prior to bloom collapse, there was a significant reduction in PSII efficiency with an average decrease in maximum PSII photochemical efficiency (Fv/Fm) of 17% and a corresponding 75% increase in maximum PSII effective absorption cross section(σPSII); this was concurrent with a significant decrease in E. huxleyi growth rates and an increase in E. huxleyi virus (EhV) production. As E. huxleyi populations dominated the phytoplankton community and potentially contributed up to 100% of the chlorophyll a pool, we believe that the variable chlorophyll fluorescence signal measured during this period was derived predominantly from E. huxleyi and, thus, reflects changes occurring within E. huxleyi cells. This is the first demonstration of suppression of PSII photochemistry occurring during viral infection of natural coccolithophore populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the benthic microbial community to a controlled sub-seabed CO2 leak was assessed using quantitative PCR measurements of benthic bacterial, archaeal and cyanobacteria/chloroplast 16S rRNA genes. Samples were taken from four zones (epicentre; 25 m distant, 75 m distant and 450 m distant) during 6 time points (7 days before CO2 exposure, after 14 and 36 days of CO2 release, and 6, 20 and 90 days after the CO2 release had ended). Changes to the active community of microphytobenthos and bacteria were also assessed before, during and after CO2 release. Increases in the abundance of microbial 16S rRNA were detected after 14 days of CO2 release and at a distance of 25 m from the epicentre. CO2 related changes to the relative abundance of both major and minor bacterial taxa were detected: most notably an increase in the relative abundance of the Planctomycetacia after 14 days of CO2 release. Also evident was a decrease in the abundance of microbial 16S rRNA genes at the leak epicentre during the initial recovery phase: this coincided with the highest measurements of DIC within the sediment, but may be related to the release of potentially toxic metals at this time point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of a sub-seabed CO2 leak from geological sequestration on the microbial process of ammonia oxidation was investigated in the field. Sediment samples were taken before, during and after a controlled sub-seabed CO2 leak at four zones differing in proximity to the CO2 source (epicentre, and 25m, 75m, and 450m distant). The impact of CO2 release on benthic microbial ATP levels was compared to ammonia oxidation rates and the abundance of bacterial and archaeal ammonia amoA genes and transcripts, and also to the abundance of nitrite oxidize (nirS) and anammox hydrazine oxidoreductase (hzo) genes and transcripts. The major factor influencing measurements was seasonal: only minor differences were detected at the zones impacted by CO2 (epicentre and 25m distant). This included a small increase to ammonia oxidation after 37daysof CO2 release which was linked to an increase in ammonia availability as a result of mineral dissolution. A CO2 leak on the scale used within this study (<1tonneday−1) would have very little impact to ammonia oxidation within coastal sediments. However, seawater containing 5% CO2 did reduce rates of ammonia oxidation. This was linked to the buffering capacity of the sediment, suggesting that the impact of a sub-seabed leak of stored CO2 on ammonia oxidation would be dependent on both the scale of the CO2 release and sediment type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2012, a controlled sub-seabed release of carbon dioxide (CO2) was conducted in Ardmucknish Bay, a shallow (12 m) coastal bay on the west coast of Scotland. During the experiment, CO2 gas was released 12 m below the seabed for 37 days, causing significant disruption to sediment and water carbonate chemistry as the gas passed up through the sediment and into the overlying water. One of the aims of the study was to investigate how the impacts caused by leakage from geological CO2 Capture and Storage (CCS) could be detected and quantified in the context of natural heterogeneity and dynamics. To do this underwater photography was used to analyze (i) the benthic megafaunal response to the CO2 release and (ii) the dynamics of the CO2 bubble streams, emerging from the seabed into the overlying water column. The frequently observed megafauna species in the study area were Virgularia mirabilis (Cnidaria), Turritella communis (Mollusca), Asterias rubens (Echinodermata), Pagurus bernhardus (Crustacea), Liocarcinus depurator (Crustacea), and Gadus morhua (Osteichthyes). No discernable abnormal behavior was observed for these megafauna, in any of the zones investigated, during or after the CO2 release. Time-lapse photography revealed that the intensity and presence of the CO2 bubble plume was affected by the tides, with the most active bubbling seen at low tides and the larger hydrostatic pressure at high tide suppressing CO2 bubbling from the seabed.