4 resultados para conditional CAPM

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) has been developed to determine for the first time iron (Fe) organic speciation in rainwater over the typical natural range of pH. We have adapted techniques previously developed in other natural waters to rainwater samples, using the competing ligand 1-nitroso-2-naphthol (NN). The blank was equal to 0.17 ± 0.05 nM (n = 14) and the detection limit (DL) for labile Fe was 0.15 nM which is 10–70 times lower than that of previously published methods. The conditional stability constant for NN under rainwater conditions was calibrated over the pH range 5.52–6.20 through competition with ethylenediaminetetraacetic acid (EDTA). The calculated value of the logarithm of β′Fe3+3(NN)β′Fe3+(NN)3 increased linearly with increasing pH according to log β′Fe3+3(NN)=2.4±0.6×pH+11.9±3.5log β′Fe3+(NN)3=2.4±0.6×pH+11.9±3.5 (salinity = 2.9, T = 20 °C). The validation of the method was carried out using desferrioxamine mesylate B (DFOB) as a natural model ligand for Fe. Adequate detection windows were defined to detect this class of ligands in rainwater with 40 μM of NN from pH 5.52 to 6.20. The concentration of Fe-complexing natural ligands was determined for the first time in three unfiltered and one filtered rainwater samples. Organic Fe-complexing ligand concentrations varied from 104.2 ± 4.1 nM equivalent of Fe(III) to 336.2 ± 19.0 nM equivalent of Fe(III) and the logarithm of the conditional stability constants, with respect to Fe3+, varied from 21.1 ± 0.2 to 22.8 ± 0.3. This method will provide important data for improving our understanding of the role of wet deposition in the biogeochemical cycling of iron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transfer of gases between the atmosphere and ocean is affected by a number of processes, of which wave action and rainfall are two of potential significance. Efforts have been made to quantify separately their contributions; however such assessments neglect the interaction of these phenomena. Here we look at the correlation statistics of waves and rain to note which regions display a strong association between rainfall and the local sea state. The conditional probability of rain varies from ~0.5% to ~15%, with most of the equatorial belt (which contains the ITCZ) showing a greater likelihood of rain at the lowest sea states. In contrast the occurrence of rain is independent of wave height in the Southern Ocean. The 1997/98 El Niño enhances the frequency of rain in some Pacific regions, with this change showing some association with wave conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mediterranean demersal fisheries are highly multispecific and many of their target stocks are overexploited. In addition, rocketing fuel costs and low market prices of traditionally high-value species are challenging the viability of fisheries. Here, based on the numeric results of a simulation model, we conclude that this situation can be remedied by reducing both fishing mortality and fishing costs. According to our model results, fishing effort reductions of 48–71% would improve the health of fish stocks while increasing the economic profits of Mallorca islands bottom trawl fishery to as much as 1.9 M€ (146% higher than current profits). If all fish stocks were exploited at their MSY (or below) level, the reduction in fishing effort would have to be of 71% from current values. If equilibrium profits from the fishery were to be maximized (MEY), fishing effort would need to be reduced by 48%. These results must be taken with caution due the many sources of uncertainty of our analysis. The modeling tools used to estimate these values are conditional to the adequate treatment of two sources of uncertainty that are particularly problematic in Mediterranean fisheries: insufficiently known recruitment variability and lack of periodic evaluations of the state of many species. Our results show that fishing effort reductions would produce economic yield gains after a period of transition. Further studies on the benefits of changing the size-selection pattern of fisheries, on better estimation of stock–recruitment relationships and on better quantifications of the contribution of secondary species to these fisheries, are expected to improve the scientific recommendations for Mediterranean demersal fisheries toward sustainability principles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mediterranean demersal fisheries are highly multispecific and many of their target stocks are overexploited. In addition, rocketing fuel costs and low market prices of traditionally high-value species are challenging the viability of fisheries. Here, based on the numeric results of a simulation model, we conclude that this situation can be remedied by reducing both fishing mortality and fishing costs. According to our model results, fishing effort reductions of 48-71% would improve the health of fish stocks while increasing the economic profits of Mallorca islands bottom trawl fishery to as much as 1.9 M(sic) (146% higher than current profits). If all fish stocks were exploited at their MSY (or below) level, the reduction in fishing effort would have to be of 71% from current values. If equilibrium profits from the fishery were to be maximized (MEY), fishing effort would need to be reduced by 48%. These results must be taken with caution due the many sources of uncertainty of our analysis. The modeling tools used to estimate these values are conditional to the adequate treatment of two sources of uncertainty that are particularly problematic in Mediterranean fisheries: insufficiently known recruitment variability and lack of periodic evaluations of the state of many species. Our results show that fishing effort reductions would produce economic yield gains after a period of transition. Further studies on the benefits of changing the size-selection pattern of fisheries, on better estimation of stock recruitment relationships and on better quantifications of the contribution of secondary species to these fisheries, are expected to improve the scientific recommendations for Mediterranean demersal fisheries toward sustainability principles.