13 resultados para classification of nuclear C*-algebras

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copepods of the genus Calanus are key zooplankton species in temperate to arctic marine ecosystems. Despite their ecological importance, species identification remains challenging. Furthermore, the recent report of hybrids among Calanus species highlights the need for diagnostic nuclear markers to efficiently identify parental species and hybrids. Using next-generation sequencing analysis of both the genome and transcriptome from two sibling species, Calanus finmarchicus and Calanus glacialis, we developed a panel of 12 nuclear insertion/deletion markers. All the markers showed species-specific amplicon length. Furthermore, most of the markers were successfully amplified in other Calanus species, allowing the molecular identification of Calanus helgolandicus, Calanus hyperboreus and Calanus marshallae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic taxonomic categorisation of 23 species of dinoflagellates was demonstrated using field-collected specimens. These dinoflagellates have been responsible for the majority of toxic and noxious phytoplankton blooms which have occurred in the coastal waters of the European Union in recent years and make severe impact on the aquaculture industry. The performance by human 'expert' ecologists/taxonomists in identifying these species was compared to that achieved by 2 artificial neural network classifiers (multilayer perceptron and radial basis function networks) and 2 other statistical techniques, k-Nearest Neighbour and Quadratic Discriminant Analysis. The neural network classifiers outperform the classical statistical techniques. Over extended trials, the human experts averaged 85% while the radial basis network achieved a best performance of 83%, the multilayer perceptron 66%, k-Nearest Neighbour 60%, and the Quadratic Discriminant Analysis 56%.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of dense harmful algal blooms (HABs) by satellite remote sensing is usually based on analysis of chlorophyll-a as a proxy. However, this approach does not provide information about the potential harm of bloom, nor can it identify the dominant species. The developed HAB risk classification method employs a fully automatic data-driven approach to identify key characteristics of water leaving radiances and derived quantities, and to classify pixels into “harmful”, “non-harmful” and “no bloom” categories using Linear Discriminant Analysis (LDA). Discrimination accuracy is increased through the use of spectral ratios of water leaving radiances, absorption and backscattering. To reduce the false alarm rate the data that cannot be reliably classified are automatically labelled as “unknown”. This method can be trained on different HAB species or extended to new sensors and then applied to generate independent HAB risk maps; these can be fused with other sensors to fill gaps or improve spatial or temporal resolution. The HAB discrimination technique has obtained accurate results on MODIS and MERIS data, correctly identifying 89% of Phaeocystis globosa HABs in the southern North Sea and 88% of Karenia mikimotoi blooms in the Western English Channel. A linear transformation of the ocean colour discriminants is used to estimate harmful cell counts, demonstrating greater accuracy than if based on chlorophyll-a; this will facilitate its integration into a HAB early warning system operating in the southern North Sea.