19 resultados para change management risorse umane processi
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The Continuous Plankton Recorder (CPR) survey was conceived from the outset as a programme of applied research designed to assist the fishing industry. Its survival and continuing vigour after 70 years is a testament to its utility, which has been achieved in spite of great changes in our understanding of the marine environment and in our concerns over how to manage it. The CPR has been superseded in several respects by other technologies, such as acoustics and remote sensing, but it continues to provide unrivalled seasonal and geographic information about a wide range of zooplankton and phytoplankton taxa. The value of this coverage increases with time and provides the basis for placing recent observations into the context of long-term, large-scale variability and thus suggesting what the causes are likely to be. Information from the CPR is used extensively in judging environmental impacts and producing quality status reports (QSR); it has shown the distributions of fish stocks, which had not previously been exploited; it has pointed to the extent of ungrazed phytoplankton production in the North Atlantic, which was a vital element in establishing the importance of carbon sequestration by phytoplankton. The CPR continues to be the principal source of large-scale, long-term information about the plankton ecosystem of the North Atlantic. It has recently provided extensive information about the biodiversity of the plankton and about the distribution of introduced species. It serves as a valuable example for the design of future monitoring of the marine environment and it has been essential to the design and implementation of most North Atlantic plankton research.
Resumo:
The fisheries sector is crucial to the Bangladeshi economy and wellbeing, accounting for 4.4% of national Gross Domestic Product (GDP) and 22.8% of agriculture sector production, and supplying ca.60% of the national animal protein intake. Fish is vital to the 16 million Bangladeshis living near the coast, a number that has doubled since the 1980s. Here we develop and apply tools to project the long term productive capacity of Bangladesh marine fisheries under climate and fisheries management scenarios, based on downscaling a global climate model, using associated river flow and nutrient loading estimates, projecting high resolution changes in physical and biochemical ocean properties, and eventually projecting fish production and catch potential under different fishing mortality targets. We place particular interest on Hilsa shad (Tenualosa ilisha), which accounts for ca.11% of total catches, and Bombay duck (Harpadon nehereus), a low price fish that is the second highest catch in Bangladesh and is highly consumed by low income communities. It is concluded that the impacts of climate change, under greenhouse emissions scenario A1B, are likely to reduce the potential fish production in the Bangladesh Exclusive Economic Zone (EEZ) by less than 10%. However, these impacts are larger for the two target species. Under sustainable management practices we expect Hilsa shad catches to show a minor decline in potential catch by 2030 but a significant (25%) decline by 2060. However, if overexploitation is allowed catches are projected to fall much further, by almost 95% by 2060, compared to the Business as Usual scenario for the start of the 21st century. For Bombay duck, potential catches by 2060 under sustainable scenarios will produce a decline of less than 20% compared to current catches. The results demonstrate that management can mitigate or exacerbate the effects of climate change on ecosystem productivity.
Resumo:
Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.
Resumo:
Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.
Resumo:
This paper examines long term changes in the plankton of the North Atlantic and northwest European shelf seas and discusses the forcing mechanisms behind some observed interannual, decadal and spatial patterns of variability with a focus on climate change. Evidence from the Continuous Plankton Records suggests that the plankton integrates hydrometeorological signals and may be used as a possible index of climate change. Changes evident in the plankton are likely to have important effects on the carrying capacity of fisheries and are of relvance to eutrophication issues and to the assessment of biodiversity. The scale of the changes seen over the past five decades emphasises the importance of maintaining existing, and establishing new, long term and wide scale monitoring programmes of the world's oceans in initiatives such as the Global Ocean Observing System (GOOS).
Resumo:
Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved.
Resumo:
1.Commercial fishing is an important socio-economic activity in coastal regions of the UK and Ireland. Ocean–atmospheric changes caused by greenhouse gas emissions are likely to affect future fish and shellfish production, and lead to increasing challenges in ensuring long-term sustainable fisheries management. 2.The paper reviews existing knowledge and understanding of the exposure of marine ecosystems to ocean-atmospheric changes, the consequences of these changes for marine fisheries in the UK and Ireland, and the adaptability of the UK and Irish fisheries sector. 3.Ocean warming is resulting in shifts in the distribution of exploited species and is affecting the productivity of fish stocks and underlying marine ecosystems. In addition, some studies suggest that ocean acidification may have large potential impacts on fisheries resources, in particular shell-forming invertebrates. 4.These changes may lead to loss of productivity, but also the opening of new fishing opportunities, depending on the interactions between climate impacts, fishing grounds and fleet types. They will also affect fishing regulations, the price of fish products and operating costs, which in turn will affect the economic performance of the UK and Irish fleets. 5.Key knowledge gaps exist in our understanding of the implications of climate and ocean chemistry changes for marine fisheries in the UK and Ireland, particularly on the social and economic responses of the fishing sectors to climate change. However, these gaps should not delay climate change mitigation and adaptation policy actions, particularly those measures that clearly have other ‘co-benefits’.
Resumo:
Growing human populations and changing dietary preferences are increasing global demands for fish, adding pressure to concerns over fisheries sustainability. Here we develop and link models of physical, biological and human responses to climate change in 67 marine national exclusive economic zones, which yield approximately 60% of global fish catches, to project climate change yield impacts in countries with different dependencies on marine fisheries. Predicted changes in fish production indicate increased productivity at high latitudes and decreased productivity at low/mid latitudes, with considerable regional variations. With few exceptions, increases and decreases in fish production potential by 2050 are estimated to be <10% (mean C3.4%) from present yields. Among the nations showing a high dependency on fisheries, climate change is predicted to increase productive potential in West Africa and decrease it in South and Southeast Asia. Despite projected human population increases and assuming that per capita fish consumption rates will be maintained1, ongoing technological development in the aquaculture industry suggests that projected global fish demands in 2050 could be met, thus challenging existing predictions of inevitable shortfalls in fish supply by the mid-twenty-first century. This conclusion, however, is contingent on successful implementation of strategies for sustainable harvesting and effective distribution of wild fish products from nations and regions with a surplus to those with a deficit. Changes in management effectiveness2 and trade practices5 will remain the main influence on realized gains or losses in global fish production.
Resumo:
Long-term biological time-series in the oceans are relatively rare. Using the two longest of these we show how the information value of such ecological time-series increases through space and time in terms of their potential policy value. We also explore the co-evolution of these oceanic biological time-series with changing marine management drivers. Lessons learnt from reviewing these sequences of observations provide valuable context for the continuation of existing time-series and perspective for the initiation of new time-series in response to rapid global change. Concluding sections call for a more integrated approach to marine observation systems and highlight the future role of ocean observations in adaptive marine management.
Resumo:
Unprecedented basin-scale ecological changes are occurring in our seas. As temperature and carbon dioxide concentrations increase, the extent of sea ice is decreasing, stratification and nutrient regimes are changing and pH is decreasing. These unparalleled changes present new challenges for managing our seas, as we are only just beginning to understand the ecological manifestations of these climate alterations. The Marine Strategy Framework Directive requires all European Member States to achieve good environmental status (GES) in their seas by 2020; this means management towards GES will take place against a background of climate-driven macroecological change. Each Member State must set environmental targets to achieve GES; however, in order to do so, an understanding of large-scale ecological change in the marine ecosystem is necessary. Much of our knowledge of macroecological change in the North Atlantic is a result of research using data gathered by the Continuous Plankton Recorder (CPR) survey, a near-surface plankton monitoring programme that has been sampling in the North Atlantic since 1931. CPR data indicate that North Atlantic and North Sea plankton dynamics are responding to both climate and human-induced changes, presenting challenges to the development of pelagic targets for achievement of GES in European Seas. Thus, the continuation of long-term ecological time series such as the CPR survey is crucial for informing and supporting the sustainable management of European seas through policy mechanisms.
Resumo:
The European Water Framework Directive requires EU Member States to introduce water quality objectives for all water bodies, including coastal waters. Measures will have to be introduced if these objectives are not met, given predictions based on current trends. In this context, the estimation of future fluxes of nutrients and contaminants in the catchment, and the evaluation of policies to improve water quality in coastal zones are an essential part of river basin management plans. This paper investigates the use of scenarios for integrated catchment/coastal zone management in the Humber Estuary in the U.K. The context of this ongoing research is a European research project which aims to assist the implementation of integrated catchment and coastal zone management by analysing the response of the coastal sea to changes in fluxes of nutrients and contaminants from the catchments. The example of the Humber illustrates how scenarios focusing on water quality improvement can provide a useful tool to investigate future fluxes and evaluate policy options for a more integrated coastal/catchment management strategy.