9 resultados para central Xinjiang

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mesozooplankton taken in continuous plankton recorder samples from the Central North Sea has changed from being numerically dominated by holoplanktonic calanoid copepod species from 1958 to the late 1970s to a situation where pluteus larvae of echinoid and ophiuroid echinoderms have been more abundant than any single holoplanktonic species in the 1980s and early 1990s. The abundance of the echinoderm larvae as a proportion of the zooplankton taken in the samples has followed a continuous increasing trend over the Dogger Bank, but off the eastern coast of northern England and southern Scotland the increase did not become obvious until the 1980s. This trend is consistent with reported increases in abundance of the macrobenthos. It is proposed that changes in the benthos have influenced the composition of the plankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-sensor satellite approach based on ocean colour, sunglint and Synthetic Aperture Radar imagery is used to study the impact of interacting internal tidal (IT) waves on near-surface chlorophyll-a distribution, in the central Bay of Biscay. Satellite imagery was initially used to characterize the internal solitary wave (ISW) field in the study area, where the “local generation mechanism” was found to be associated with two distinct regions of enhanced barotropic tidal forcing. IT beams formed at the French shelf-break, and generated from critical bathymetry in the vicinities of one of these regions, were found to be consistent with “locally generated” ISWs. Representative case studies illustrate the existence of two different axes of IT propagation originating from the French shelf-break, which intersect close to 46°N, − 7°E, where strong IT interaction has been previously identified. Evidence of constructive interference between large IT waves is then presented and shown to be consistent with enhanced levels of chlorophyll-a concentration detected by means of ocean colour satellite sensors. Finally, the results obtained from satellite climatological mean chlorophyll-a concentration from late summer (i.e. September, when ITs and ISWs can meet ideal propagation conditions) suggest that elevated IT activity plays a significant role in phytoplankton vertical distribution, and therefore influences the late summer ecology in the central Bay of Biscay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite-based remote sensing of active fires is the only practical way to consistently and continuously monitor diurnal fluctuations in biomass burning from regional, to continental, to global scales. Failure to understand, quantify, and communicate the performance of an active fire detection algorithm, however, can lead to improper interpretations of the spatiotemporal distribution of biomass burning, and flawed estimates of fuel consumption and trace gas and aerosol emissions. This work evaluates the performance of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Thermal Anomaly (FTA) detection algorithm using seven months of active fire pixels detected by the Moderate Resolution Imaging Spectroradiometer (MODIS) across the Central African Republic (CAR). Results indicate that the omission rate of the SEVIRI FTA detection algorithm relative to MODIS varies spatially across the CAR, ranging from 25% in the south to 74% in the east. In the absence of confounding artifacts such as sunglint, uncertainties in the background thermal characterization, and cloud cover, the regional variation in SEVIRI's omission rate can be attributed to a coupling between SEVIRI's low spatial resolution detection bias (i.e., the inability to detect fires below a certain size and intensity) and a strong geographic gradient in active fire characteristics across the CAR. SEVIRI's commission rate relative to MODIS increases from 9% when evaluated near MODIS nadir to 53% near the MODIS scene edges, indicating that SEVIRI errors of commission at the MODIS scene edges may not be false alarms but rather true fires that MODIS failed to detect as a result of larger pixel sizes at extreme MODIS scan angles. Results from this work are expected to facilitate (i) future improvements to the SEVIRI FTA detection algorithm; (ii) the assimilation of the SEVIRI and MODIS active fire products; and (iii) the potential inclusion of SEVIRI into a network of geostationary sensors designed to achieve global diurnal active fire monitoring.