7 resultados para calcite

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of a high resolution high performance liquid chromatography-mass spectrometry method to the study of a microbial mat system has permitted the identification of a greater number of pigments derived from green bacteria than reported in a previous study. Although the green bacteria found in the mat were identified as Chloroflexus-like, bacteriochlorophylls and bacteriophaeophytins c that can be attributed to Chloroflexaceae on the basis of literature reports account for less than 10% of the pigments derived from green bacteria in the mat. Analysis of the bacteriochlorophylls and bacteriophaeophytins c and d using atmospheric pressure chemical ionisation-liquid chromatography-tandem mass spectrometry reveals complex depth profiles, signalling inputs from a number of organisms. The pigment compositions provide evidence for green bacteria living in close proximity to the living cyanobacterial mat. Depth profiles of pigments derived from green, purple and cyanobacteria indicate that the remnants of mats present in the deeper part of the section contain a record dominated by signatures from anoxygenic photoautotrophs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emiliania huxleyi (Lohm.) Hay and Mohler is a ubiquitous unicellular marine alga surrounded by an elaborate covering of calcite platelets called coccoliths. It is an important primary producer involved in oceanic biogeochemistry and climate regulation. Currently, E. huxleyi is separated into five morphotypes based on morphometric, physiological, biochemical, and immunological differences. However, a genetic marker has yet to be found to characterize these morphotypes. With the use of sequence analysis and denaturing gradient gel electrophoresis, we discovered a genetic marker that correlates significantly with the separation of the most widely recognized A and B morphotypes. Furthermore, we reveal that the A morphotype is composed of a number of distinct genotypes. This marker lies within the 3' untranslated region of a coccolith associated protein mRNA, which is implicated in regulating coccolith calcification. Consequently, we tentatively termed this marker the coccolith morphology motif.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure, X-ray diffraction and amino acid compositions of the opercular filament cuticle, calcareous opercular plate and habitation tube of the polychaete serpulid, Pomatoceros lamarckii quatrefages, are reported. The opercular filament cuticle is made up of protein and chitin. The chitin is probably in the crystallographic α form. The structure and amino acid composition of the organic components of the opercular filament cuticle and calcareous opercular plate have similarities but are distinctly different from those of the calcareous habitation tube. The opercular plate and habitation tube are composed of different polymorphs of calcium carbonate, aragonite and calcite respectively. Comparisons are made with other chitin-protein systems, structural and calcified proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present over 900 carbonate system observations collected over four years (2007–2010) in the Western English Channel (WEC). We determined CO2 partial pressure (pCO2), Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) along a series of 40 km transects, including two oceanographic stations (L4 and E1) within a sustained coastal observatory. Our data follow a seasonal pattern of CO2 undersaturation from January to August, followed by supersaturation in September–October and a return to near-equilibrium thereafter. This pattern is explained by the interplay of thermal and biological sinks in winter and spring–summer, respectively, followed by the breakdown of stratification and mixing with deeper, high-CO2 water in autumn. The drawdown of DIC and inorganic N between March and June with a C:N ratio of 8.7–9.5 was consistent with carbon over-consumption during phytoplankton growth. Monthly mean surface pCO2 was strongly correlated with depth integrated chlorophyll a highlighting the importance of subsurface chlorophyll a maxima in controlling C-fluxes in shelf seas. Mixing of seawater with riverine freshwater in near-shore samples caused a reduction in TA and the saturation state of calcite minerals, particularly in winter. Our data show that the L4 and E1 oceanographic stations were small, net sinks for atmospheric CO2 over an annual cycle (−0.52±0.66 mol C m−2 y−1 and −0.62±0.49 mol C m−2 y−1, respectively).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very large pulses of particulate organic matter intermittently sink to the deep waters of the open ocean in the Northeast Atlantic. These pulses, measured by moored sediment traps since 1989, can contribute up to 60% of the organic flux to 3000 m in a particular year and are thus a major cause of the variability in carbon sequestration from the atmosphere in the region. Pulses occur in the late summer and are characterized by material that is very rich in organic carbon but with low concentrations of the biominerals opal and calcite. A number of independent lines of evidence have been examined to determine the causes of these pulses: (1) Data from the Continuous Plankton Recorder (CPR) survey show that in this region, radiolarian protozoans intermittently reach high abundances in the late summer just preceding organic pulses to depth. (2) CPR data also show that the interannual variability in radiolarian abundance since 1997 mirrors very closely the variability of deep ocean organic deposition. (3) The settling material collected in the traps displays a strong correlation between fecal pellets produced by radiolaria and the measured organic carbon flux. These all suggest that the pulses are mediated by radiolarians, a group of protozoans found throughout the world’s oceans and which are widely used by paleontologists to determine past climate conditions. Changes in the upper ocean community structure (between years and on longer timescales) may have profound effects on the ability of the oceans to sequester carbon dioxide from the atmosphere.