4 resultados para branching morphogenesis

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate identification of stock boundaries is essential for efficient fisheries management, hence the present study focused on the genetic structure of whiting. To this aim, 488 individuals collected from the southern Bay of Biscay to the southern Norwegian coast were genotyped using seven microsatellites. A low level of genetic structuring was detected in Atlantic waters since only the Bay of Biscay differentiated from more northern samples. The lack of genetic structure along the western margin of the British Isles is consistent with a high level of passive transport of pelagic eggs and larvae due to the combined influence of the North Atlantic Current and the Shelf Edge Current. High levels of dispersal could also occur between the western British Isles and the North Sea through both the branching of the North Atlantic Current into the northern North Sea and from the residual current flowing from the English Channel to the Southern Bight. In contrast, a significant genetic structure was identified within the North Sea, and this may be associated with the complex oceanography of this basin and retention systems reducing larval dispersal. In addition, considering also genetic, phenotypic and tag-recapture data collected on whiting, a learned homing behaviour of adults toward spawning areas may be hypothesised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the 1970s and 1980s, the late Dr Norman Holme undertook extensive towed sledge surveys in the English Channel and some in the Irish Sea. Only a minority of the resulting images were analysed and reported before his death in 1989 but logbooks, video and film material has been archived in the National Marine Biological Library (NMBL) in Plymouth. A study was therefore commissioned by the Joint Nature Conservation Committee and as a part of the Mapping European Seabed Habitats (MESH) project to identify the value of the material archived and the procedure and cost to undertake further work (Phase 1 of the study reported here: Oakley & Hiscock, 2005). Some image analysis was undertaken as a part of Phase 1. Phase 2 (this report) was to further analyse selected images. Having determined in Phase 1 that only the 35 mm photographic transparencies provided sufficient clarity to identify species and biotopes, the tows selected for analysis were ones where 35mm images had been taken. The tows selected for analysis of images were mainly in the vicinity of Plymouth and especially along the area between Rame Head and the region of the Eddystone. The 35 mm films were viewed under a binocular microscope and the taxa that could be recognised recorded in note form. Twenty-five images were selected for inclusion in the report. Almost all of the images were of level sediment seabed. Where rocks were included, it was usually unplanned and the sled was hauled before being caught or damaged. The main biotopes or biotope complexes identified were: SS.SMU.CSaMu. Circalittoral sandy mud. Extensively present between the shore and the Eddystone Reef complex and at depths of about 48 to 52 m. At one site offshore of Plymouth Sound, the turret shell Turritella communis was abundant. In some areas, this biotope had dense anemones, Mesacmaea mitchelli and (more rarely) Cerianthus lloydii. Queen scallops, Aequipecten opercularis and king scallops, Pecten maximus, were sometimes present in small numbers. Hard substratum species such as hydroids, dead mens fingers Alcyonium digitatum and the cup coral Caryophyllia smithii occurred in a few places, probably attached to shells or stones beneath the surface. South of the spoil ground off Hilsea Point at 57m depth, the sediment was muddier but is still assigned to this biotope complex. It is notable that three small sea pens, most likely Virgularia mirabilis, were seen here. SS.SMx.CMx. Circalittoral mixed sediment. Further offshore but at about the same depth as SS.SMU.CSaMu occurred, coarse gravel with some silt was present. The sediment was characterised must conspicuously by small queen scallops, Aequipecten opercularis. Peculiarly, there were ‘bundles’ of the branching bryozoan Cellaria sp. – a species normally found attached to rock. It could not be seen whether these bundles of Cellaria had been brought-together by terebellid worms but it is notable that Cellaria is recorded in historical surveys. As with many other sediments, there were occasional brittle stars, Ophiocomina nigra and Ophiura ophiura. Where sediments were muddy, the burrowing anemone Mesacmaea mitchelli was common. Where pebbles or cobbles occurred, there were attached species such as Alcyonium digitatum, Caryophyllia smithii and the fleshy bryozoan Alcyonidium diaphanum. Undescribed biotope. Although most likely a part of SS.SMx.CMx, the biotope visually dominated by a terebellid worm believed to be Thelepus cincinnatua, is worth special attention as it may be an undescribed biotope. The biotope occurred about 22 nautical miles south of the latitude of the Eddystone and in depths in excess of 70 m. SS.SCS.CCS.Blan. Branchiostoma lanceolatum in circalittoral coarse sand with shell gravel at about 48m depth and less. This habitat was the ‘classic’ ‘Eddystone Shell Gravel’ which is sampled for Branchiostoma lanceolatum. However, no Branchiostoma lanceolatum could be seen. The gravel was almost entirely bare of epibiota. There were occasional rock outcrops or cobbles which had epibiota including encrusting calcareous algae, the sea fan Eunicella verrucosa, cup corals, Caryophyllia smithii, hydroids and a sea urchin Echinus esculentus. The variety of species visible on the surface is small and therefore identification to biotope not usually possible. Historical records from sampling surveys that used grabs and dredges at the end of the 19th century and early 20th century suggest similar species present then. Illustrations of some of the infaunal communities from work in the 1920’s is included in this report to provide a context to the epifaunal photographs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal fronts detected using multiple satellite sensors have been integrated to provide new information on the spatial and seasonal distribution of oceanic fronts in the North Atlantic. The branching of the North Atlantic Current (NAC) as it encounters the Mid-Atlantic Ridge (MAR) is reflected in surface thermal fronts, which preferentially occur at the Charlie Gibbs Fracture Zone (CGFZ) and several smaller fracture zones. North of the CGFZ there are few thermal fronts, contrasting with the region to the south, where there are frequent surface thermal fronts that are persistent seasonally and interannually. The alignment of the fronts confirms that the shallower Reykjanes Ridge north of the CGFZ is more of a barrier to water movements than the ridge to the south. Comparison of front distributions with satellite altimetry data indicates that the MAR influence on deep ocean currents is also frequently exhibited in surface temperature. The improved spatial and temporal resolution of the front analysis has revealed consistent seasonality in the branching patterns. These results contribute to our understanding of the variability of the NAC, and the techniques for visualising oceanic fronts can be applied in other regions to reveal details of surface currents that cannot be resolved using satellite altimetry or in situ measurements.