6 resultados para benthic communities

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The English Channel is located at the biogeographical boundary between the northern Boreal and southern Lusitanian biozones and therefore represents an important area to study the effects of global warming on marine organisms. While the consequences of climatic change in the western English Channel have been relatively well documented for fish, plankton and inter-tidal benthic communities, data highlighting the same effects on the distribution of sub-littoral benthic organisms does, to date, not exist. The present study resurveyed a subset of sites originally surveyed from 1958 to 1959 along the UK coast of the English Channel. The main aims of this resurvey were to describe the present status of benthic communities and to investigate potential temporal changes, in particular distributional changes in western stenothermal ‘cold’ water and southern Lusitanian ‘warm’ water species. The increase in water temperature observed since the historic survey was predicted to have caused a contraction in the distribution of cold water species and an extension in the distribution of warm water species. The temporal comparison did not show any clear broad-scale distributional changes in benthic communities consistent with these predictions. Nevertheless, 2 warm water species, the sting winkle Ocenebra erinacea and the introduced American slipper limpet Crepidula fornicata, did show range extensions and increased occurrence, possibly related to climatic warming. Similarly, warm water species previously not recorded by the historic survey were found. The absence of broad-scale temporal differences in sub-tidal communities in response to climatic warming has been reported for other areas and may indicate that these communities respond far more slowly to environmental changes compared to plankton, fish and inter-tidal organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The English Channel is located at the biogeographical boundary between the northern Boreal and southern Lusitanian biozones and therefore represents an important area to study the effects of global warming on marine organisms. While the consequences of climatic change in the western English Channel have been relatively well documented for fish, plankton and inter-tidal benthic communities, data highlighting the same effects on the distribution of sub-littoral benthic organisms does, to date, not exist. The present study resurveyed a subset of sites originally surveyed from 1958 to 1959 along the UK coast of the English Channel. The main aims of this resurvey were to describe the present status of benthic communities and to investigate potential temporal changes, in particular distributional changes in western stenothermal ‘cold’ water and southern Lusitanian ‘warm’ water species. The increase in water temperature observed since the historic survey was predicted to have caused a contraction in the distribution of cold water species and an extension in the distribution of warm water species. The temporal comparison did not show any clear broad-scale distributional changes in benthic communities consistent with these predictions. Nevertheless, 2 warm water species, the sting winkle Ocenebra erinacea and the introduced American slipper limpet Crepidula fornicata, did show range extensions and increased occurrence, possibly related to climatic warming. Similarly, warm water species previously not recorded by the historic survey were found. The absence of broad-scale temporal differences in sub-tidal communities in response to climatic warming has been reported for other areas and may indicate that these communities respond far more slowly to environmental changes compared to plankton, fish and inter-tidal organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic climate change is causing unprecedented rapid responses in marine communities, with species across many different taxonomic groups showing faster shifts in biogeographic ranges than in any other ecosystem. Spatial and temporal trends for many marine species are difficult to quantify, however, due to the lack of long-term datasets across complete geographical distributions and the occurrence of small-scale variability from both natural and anthropogenic drivers. Understanding these changes requires a multidisciplinary approach to bring together patterns identified within long-term datasets and the processes driving those patterns using biologically relevant mechanistic information to accurately attribute cause and effect. This must include likely future biological responses, and detection of the underlying mechanisms in order to scale up from the organismal level to determine how communities and ecosystems are likely to respond across a range of future climate change scenarios. Using this multidisciplinary approach will improve the use of robust science to inform the development of fit-for-purpose policy to effectively manage marine environments in this rapidly changing world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic climate change is causing unprecedented rapid responses in marine communities, with species across many different taxonomic groups showing faster shifts in biogeographic ranges than in any other ecosystem. Spatial and temporal trends for many marine species are difficult to quantify, however, due to the lack of long-term datasets across complete geographical distributions and the occurrence of small-scale variability from both natural and anthropogenic drivers. Understanding these changes requires a multidisciplinary approach to bring together patterns identified within long-term datasets and the processes driving those patterns using biologically relevant mechanistic information to accurately attribute cause and effect. This must include likely future biological responses, and detection of the underlying mechanisms in order to scale up from the organismal level to determine how communities and ecosystems are likely to respond across a range of future climate change scenarios. Using this multidisciplinary approach will improve the use of robust science to inform the development of fit-for-purpose policy to effectively manage marine environments in this rapidly changing world.