52 resultados para basal metabolism
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
1. The energy contributions of aerobic metabolism, phosphoarginine, ATP and octopine in the adductor muscles of P. magellanicus were examined during swimming and recovery. 2. A linear relationship was observed between the size of the phosphoarginine pool and the number of valve snaps. A linear increase in arginine occurred during the same period. 3. 3. Octopine was formed during the first few hours of recovery, particularly in the phasic muscle. 4. The restoration of the phosphoarginine pool appeared to be by aerobic metabolism. 5. It is concluded that the role of octopine formation is to supply energy when the tissues are anoxic and to operate at such a rate as to maintain the basal rate of energy production.
Resumo:
1. The results presented in this paper show that the exposure of mussels to a sublethal concentration of oil-derived aromatic hydrocarbons (30 μg 1−1) for a period of 4 months significantly decreases the protein level in the digestive gland of the animals (−17%). 2. The activity of the nuclear RNA polymerase I and II is also significantly decreased in the digestive gland of hydrocarbon-exposed mussels (−64% and −18%, respectively). 3. The RNAase(s) activity present in the nuclei from the digestive gland cells increases following the exposure of the mussels to aromatic hydrocarbons. This effect is particularly evident at high ionic strength [200 mM (NH4)2SO4]. 4. The analysis of some characteristics of the nuclear RNAase(s) (most of which is soluble and shows a maximum of activity at pH 4−5) could indicate that part of this hydrolytic enzyme may have a lysosomal origin. 5. This fact appears to be in agreement with the finding that in the mussels exposed for 4 months to aromatic hydrocarbons the lysosomal stability decreases drastically and the total content of lysosomal enzymes is significantly increased (+42.4%).
Resumo:
1. Glucose-6-phosphate dehydrogenase from the hepatopancreas and mantle tissue of M. edulis was investigated over two years for changes in specific activity (crude enzyme preparations) and the apparent Michaelis constants for G6P and NADP+ (highly purified enzyme preparations). 2. The specific activity of the mantle enzyme was low in summer and autumn and increased in the winter during the time of lipid deposition. In contrast, the specific activity of the hepatopancreas enzyme was high in summer and declined during the autumn and winter. 3. The apparent values for G6P and NADP+ of the mantle enzymechange little during a year. Changes were observed for the hepatopancreas enzyme during the first year but not the second.