85 resultados para atmospheric trace gases
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Many of the reactive trace gases detected in the atmosphere are both emitted from and deposited to the global oceans via exchange across the air–sea interface. The resistance to transfer through both air and water phases is highly sensitive to physical drivers (waves, bubbles, films, etc.), which can either enhance or suppress the rate of diffusion. In addition to outlining the fundamental processes controlling the air–sea gas exchange, the authors discuss these drivers, describe the existing parameterizations used to predict transfer velocities, and summarize the novel techniques for measuring in situ exchange rates. They review trace gases that influence climate via radiative forcing (greenhouse gases), those that can alter the oxidative capacity of the atmosphere (nitrogen- and sulfur-containing gases), and those that impact ozone levels (organohalogens), both in the troposphere and stratosphere. They review the known biological and chemical routes of production and destruction within the water column for these gases, whether the ocean acts as a source or sink, and whether temporal and spatial variations in saturation anomalies are observed. A current estimate of the marine contribution to the total atmospheric flux of these gases, which often highlights the significance of the oceans in biogeochemical cycling of trace gases, is provided, and how air–sea gas fluxes may change in the future is briefly assessed.
Resumo:
The sea-surface layer is the very upper part of the sea surface where reduced mixing leads to strong gradients in physical, chemical and biological properties1. This surface layer is naturally reactive, containing a complex chemistry of inorganic components and dissolved organic matter (DOM), the latter including amino acids, proteins, fatty acids, carbohydrates, and humic-type components,2 with a high proportion of functional groups such as carbonyls, carboxylic acids and aromatic moieties.3 The different physical and chemical properties of the surface of the ocean compared with bulk seawater, and its function as a gateway for molecules to enter the atmosphere or ocean phase, make this an interesting and important region for study. A number of chemical reactions are believed to occur on and in the surface ocean; these may be important or even dominant sources or sinks of climatically-active marine trace gases. However the sea surface, especially the top 1um to 1mm known as the sea surface microlayer (ssm), is critically under-sampled, so to date much of the evidence for such chemistry comes from laboratory and/or modeling studies. This review discusses the chemical and physical structure of the sea surface, mechanisms for gas transfer across it, and explains the current understanding of trace gas formation at this critical interface between the ocean and atmosphere.
Resumo:
The role of the ocean in the cycling of oxygenated volatile organic compounds (OVOCs) remains largely unanswered due to a paucity of datasets. We describe the method development of a membrane inlet-proton transfer reaction/mass spectrometer (MI-PTR/MS) as an efficient method of analysing methanol, acetaldehyde and acetone in seawater. Validation of the technique with water standards shows that the optimised responses are linear and reproducible. Limits of detection are 27 nM for methanol, 0.7 nM for acetaldehyde and 0.3 nM for acetone. Acetone and acetaldehyde concentrations generated by MI-PTR/MS are compared to a second, independent method based on purge and trap-gas chromatography/flame ionisation detection (P&T-GC/FID) and show excellent agreement. Chromatographic separation of isomeric species acetone and propanal permits correction to mass 59 signal generated by the PTR/MS and overcomes a known uncertainty in reporting acetone concentrations via mass spectrometry. A third bioassay technique using radiolabelled acetone further supported the result generated by this method. We present the development and optimisation of the MI-PTR/MS technique as a reliable and convenient tool for analysing seawater samples for these trace gases. We compare this method with other analytical techniques and discuss its potential use in improving the current understanding of the cycling of oceanic OVOCs.
What are the local impacts of energy systems on marine ecosystem services: a systematic map protocol
Resumo:
Background: Increasing concentrations of atmospheric greenhouse gases (GHG) and its impact on the climate has resulted in many international governments committing to reduce their GHG emissions. The UK, for example, has committed to reducing its carbon emissions by 80% by 2050. Suggested ways of reaching such a target are to increase dependency on offshore wind, offshore gas and nuclear. It is not clear, however, how the construction, operation and decommissioning of these energy systems will impact marine ecosystem services, i.e. the services obtained by people from the natural environment such as food provisioning, climate regulation and cultural inspiration. Research on ecosystem service impacts associated with offshore energy technologies is still in its infancy. The objective of this review is to bolster the evidence base by firstly, recording and describing the impacts of energy technologies at the marine ecosystems and human level in a consistent and transparent way; secondly, to translate these ecosystem and human impacts into ecosystem service impacts by using a framework to ensure consistency and comparability. The output of this process will be an objective synthesis of ecosystem service impacts comprehensive enough to cover different types of energy under the same analysis and to assist in informing how the provision of ecosystem services will change under different energy provisioning scenarios. Methods: Relevant studies will be sourced using publication databases and selected using a set of selection criteria including the identification of: (i) relevant subject populations such as marine and coastal species, marine habitat types and the general public; (ii) relevant exposure types including offshore wind farms, offshore oil and gas platforms and offshore structures connected with nuclear; (iii) relevant outcomes including changes in species structure and diversity; changes in benthic, demersal and pelagic habitats; and changes in cultural services. The impacts will be synthesised and described using a systematic map. To translate these findings into ecosystem service impacts, the Common International Classification of Ecosystem Services (CICES) and Millennium Ecosystem Assessment (MEA) frameworks are used and a detailed description of the steps taken provided to ensure transparency and replicability.
Resumo:
Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.
Resumo:
Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.
Resumo:
The oceans contribute significantly to the global emissions of a number of atmospherically important volatile gases, notably those containing sulfur, nitrogen and halogens. Such gases play critical roles not only in global biogeochemical cycling but also in a wide range of atmospheric processes including marine aerosol formation and modification, tropospheric ozone formation and destruction, photooxidant cycling and stratospheric ozone loss. A number of marine emissions are greenhouse gases, others influence the Earth's radiative budget indirectly through aerosol formation and/or by modifying oxidant levels and thus changing the atmospheric lifetime of gases such as methane. In this article we review current literature concerning the physical, chemical and biological controls on the sea-air emissions of a wide range of gases including dimethyl sulphide (DMS), halocarbons, nitrogen-containing gases including ammonia (NH3), amines (including dimethylamine, DMA, and diethylamine, DEA), alkyl nitrates (RONO2) and nitrous oxide (N2O), non-methane hydrocarbons (NMHC) including isoprene and oxygenated (O)VOCs, methane (CH4) and carbon monoxide (CO). Where possible we review the current global emission budgets of these gases as well as known mechanisms for their formation and loss in the surface ocean.
Resumo:
Very short-lived halocarbons are significant sources of reactive halogen in the marine boundary layer, and likely in the upper troposphere and lower stratosphere. Quantifying ambient concentrations in the surface ocean and atmosphere is essential for understanding the atmospheric impact of these trace gas fluxes. Despite the body of literature increasing substantially over recent years, calibration issues complicate the comparison of results and limit the utility of building larger-scale databases that would enable further development of the science (e.g. sea-air flux quantification, model validation, etc.). With this in mind, thirty-one scientists from both atmospheric and oceanic halocarbon communities in eight nations gathered in London in February 2008 to discuss the scientific issues and plan an international effort toward developing common calibration scales (http://tinyurl.com/c9cg58). Here, we discuss the outputs from this meeting, suggest the compounds that should be targeted initially, identify opportunities for beginning calibration and comparison efforts, and make recommendations for ways to improve the comparability of previous and future measurements.
Resumo:
In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a similar to 10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at similar to 5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.
Resumo:
Atmospheric inputs of mineral dust supply iron and other trace metals to the remote ocean and can influence the marine carbon cycle due to iron's role as a potentially limiting micronutrient. Dust generation, transport, and deposition are highly heterogeneous, and there are very few remote marine locations where dust concentrations and chemistry (e.g., iron solubility) are routinely monitored. Here we use aerosol and rainwater samples collected during 10 large-scale research cruises to estimate the atmospheric input of iron, aluminum, and manganese to four broad regions of the Atlantic Ocean over two 3 month periods for the years 2001–2005. We estimate total inputs of these metals to our study regions to be 4.2, 17, and 0.27 Gmol in April–June and 4.9, 14, and 0.19 Gmol in September–November, respectively. Inputs were highest in regions of high rainfall (the intertropical convergence zone and South Atlantic storm track), and rainfall contributed higher proportions of total input to wetter regions. By combining input estimates for total and soluble metals for these time periods, we calculated overall percentage solubilities for each metal that account for the contributions from both wet and dry depositions and the relative contributions from different aerosol types. Calculated solubilities were in the range 2.4%–9.1% for iron, 6.1%–15% for aluminum, and 54%–73% for manganese. We discuss sources of uncertainty in our estimates and compare our results to some recent estimates of atmospheric iron input to the Atlantic.