26 resultados para aromatic alcohols

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The results presented in this paper show that the exposure of mussels to a sublethal concentration of oil-derived aromatic hydrocarbons (30 μg 1−1) for a period of 4 months significantly decreases the protein level in the digestive gland of the animals (−17%). 2. The activity of the nuclear RNA polymerase I and II is also significantly decreased in the digestive gland of hydrocarbon-exposed mussels (−64% and −18%, respectively). 3. The RNAase(s) activity present in the nuclei from the digestive gland cells increases following the exposure of the mussels to aromatic hydrocarbons. This effect is particularly evident at high ionic strength [200 mM (NH4)2SO4]. 4. The analysis of some characteristics of the nuclear RNAase(s) (most of which is soluble and shows a maximum of activity at pH 4−5) could indicate that part of this hydrolytic enzyme may have a lysosomal origin. 5. This fact appears to be in agreement with the finding that in the mussels exposed for 4 months to aromatic hydrocarbons the lysosomal stability decreases drastically and the total content of lysosomal enzymes is significantly increased (+42.4%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in the concentrations and microheterotrophic degradation rates of selected Polycyclic Aromatic Hydrocarbons (PAH) in the water column of the Tamar Estuary were investigated in relation to the major environmental variables. Concentrations of individual PAH varied typically between i and 50 ng l−1 Based on their observed environmental behaviour the PAH appeared divisible into two groupings: (1) low molecular weight PAH incorporating naphthalene, phenanthrene and anthracence and (a) the larger molecular weight homologues (fluoranthene, pyrene, chrysene, benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)-pyrene). Group 1 PAH showed a complex distribution throughout the estuary with no significant correlations with either salinity or suspended particulates. Based on their relatively low particle affinity and high water solubilities and vapour pressures, volatilization is proposed as an important process in determining their fate. Microheterotrophic turnover times of naphthalene varied between x and 30 days, and were independent of suspended solids with maximum degradation rates located in the central and urban regions of the Estuary. When compared with the flushing times for the Tamar (3–5 days), it is probable that heterotrophic activity is important in the removal of naphthalene (and possibly the other Group 1 PAH) from the estuarine environment. In contrast Group 2 PAH concentrations exhibited highly significant correlations with suspended particulates. Highest concentrations occurred at the turbidity maximum, with a secondary concentration maximum localized to the industrialized portion of the estuary and associated with anthropogenic inputs. Laboratory degradation studies of benzo(a)pyrene in water samples taken from the estuary showed turnover times for the compound of between 2000 and 9000 days. Degradation rates correlated positively with suspended solids. The high particulate affinity and microbial refractivity of Group 2 PAH indicate sediment burial as the principal tate of these PAH in the Tamar Estuary. Estuarine sediments contained typically 50–1500 ng g−1 dry weight of individual PAH which were comparable to the levels of Group 2 PAH associated with the suspended particulates. Highest concentrations occurred at the riverine end of the estuary resulting from unresolved inputs in the catchment. Subsequent dilution by less polluted marine sediments together with slow degradation results in a seaward trend of decreasing concentrations. However, there is a secondary maximum of PAH superimposed on this trend which is associated with urban Plymouth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The marine bivalve mollusc,Mytilus edulis (blue mussel), is a noted accumulator of many environmental pollutants and is increasingly used for the chemical and biological assessment of environmental impact. The toxic effects of crude oil-derived aromatic hydrocarbons (30 μg/l total hydrocarbons) on the lysosomal-vacuolar system of the digestive cells have been investigated in cryostat sections of hexane-frozen digestive glands. Exposure to aromatic hydrocarbons reduced the cytochemically determined latency of lysosomal β-N-acetylhexosaminidase; lysosomal volume density and surface density increased while the numerical density decreased. Experimental exposure resulted in the formation of very large lysosomes which are believed to be largely autophagic in function and these results indicate a significant structural and functional disturbance of digestive cell lysosomes in response to hydrocarbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain polycyclic aromatic hydrocarbons and phenobarbital induced an increase in the activity of microsomal NADPH neotetrazolium reductase (linked to mixed function oxygenase systems) in the blood cells of Mytilus edulis. Phenanthrene and methylated naphthalenes caused lysosomal destabilisation which is believed to be directly related to the mechanism of cytotoxicity in the digestive cells. The use of these cytochemical techniques as indices of aromatic hydrocarbon contamination is discussed.