4 resultados para animal-plant protein ratio

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The controls on the 'Redfield' N:P stoichiometry of marine phytoplankton and hence the N:P ratio of the deep ocean remain incompletely understood. Here, we use a model for phytoplankton ecophysiology and growth, based on functional traits and resource-allocation trade-offs, to show how environmental filtering, biotic interactions, and element cycling in a global ecosystem model determine phytoplankton biogeography, growth strategies and macromolecular composition. Emergent growth strategies capture major observed patterns in marine biomes. Using a new synthesis of experimental RNA and protein measurements to constrain per-ribosome translation rates, we determine a spatially variable lower limit on adaptive rRNA:protein allocation and hence on the relationship between the largest cellular P and N pools. Comparison with the lowest observed phytoplankton N:P ratios and N:P export fluxes in the Southern Ocean suggests that additional contributions from phospholipid and phosphorus storage compounds play a fundamental role in determining the marine biogeochemical cycling of these elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton cell size influences particle sinking rate, food web interactions and biogeographical distributions. We present a model in which the uptake, storage and assimilation of nitrogen and carbon are explicitly resolved in different-sized phytoplankton cells. In the model, metabolism and cellular C :N ratio are influenced by the accumulation of carbon polymers such as carbohydrate and lipid, which is greatest when cells are nutrient starved, or exposed to high light. Allometric relations and empirical data sets are used to constrain the range of possible C : N, and indicate that larger cells can accumulate significantly more carbon storage compounds than smaller cells. When forced with extended periods of darkness combined with brief exposure to saturating irradiance, the model predicts organisms large enough to accumulate significant carbon reserves may on average synthesize protein and other functional apparatus up to five times faster than smaller organisms. The advantage of storage in terms of average daily protein synthesis rate is greatest when modeled organisms were previously nutrient starved, and carbon storage reservoirs saturated. Small organisms may therefore be at a disadvantage in terms of average daily growth rate in environments that involve prolonged periods of darkness and intermittent nutrient limitation. We suggest this mechanism is a significant constraint on phytoplankton C :N variability and cell size distribution in different oceanic regimes.