2 resultados para after Schrader and Gersonde (1978)

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous autoanalytical recordings of the axial distributions of dissolved nitrate, silicate and phosphate in the influent freshwater and saline waters of the Tamar Estuary, south-west England have been obtained. Short-term variability in the distributions was assessed by repetitive profiling at approximately 3-h intervals on a single day and seasonal comparisons were obtained from ten surveys carried out between June 1977 and August 1978. Whereas nitrate is always essentially conserved throughout the upper estuary, the silicate- and phosphate-salinity relationships consistently indicate a non-biological removal of these nutrients within the low (0–10%) salinity range. Attempts to quantify precisely the degree of removal and to correlate this with changes in environmental properties (pH, turbidity, chlorophyll fluorescence, salinity, freshwater composition) were mainly inconclusive due to short-term fluctuations in the riverine concentrations of silicate and phosphate advected into the reactive region and to the rapid changes in turbidity brought about by tidally-induced resuspension and deposition of bottom sediment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochemical observations and measurements on cell-free suspensions of lysosomes from the digestive gland of Mytilus edulis showed a reduced latency of the lysosomal enzyme beta -N-acetyl-hexosaminidase 12h after mussels were transferred from 21 to 35%o salinity, but showed no change up to 6 h after transfer. There was a transient alteration in the form of the latency curve after 6 h at high salinity, signifying a gradual change in membrane integrity. Free hexosaminidase activity increased, 12 h after the salinity rise. The lysosomes were permeable to amino acids when ATP was present; permeability increased following the rise in salinity. The concentration of ninhydrin-positive substances in the lysosomes increased 6 h after transfer and then, between 6 and 12 h, the concentration declined. The results are consistent with the hypothesis that lysosomal hydrolysis is a source of free amino acids during the adaptation of mussels to increased salinity.