2 resultados para acidic biomakers

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution patterns of many species in the intertidal zone are partly determined by their ability to survive and recover from tidal emersion. During emersion, most crustaceans experience gill collapse, impairing gas exchange. Such collapse generates a state of hypoxemia and a hypercapnia-induced respiratory acidosis, leading to hyperlactaemia and metabolic acidosis. However, how such physiological responses to emersion are modified by prior exposure to elevated CO2 and temperature combinations, indicative of future climate change scenarios, is not known. We therefore investigated key physiological responses of velvet swimming crabs, Necora puber, kept for 14 days at one of four pCO(2)/temperature treatments (400 mu atm/10 degrees C, 1000 mu atm/10 degrees C, 400 mu atm/15 degrees C or 1000 mu atm/15 degrees C) to experimental emersion and recovery. Pre-exposure to elevated pCO(2) and temperature increased pre-emersion bicarbonate ion concentrations [HCO3-], increasing resistance to short periods of emersion (90 min). However, there was still a significant acidosis following 180 min emersion in all treatments. The recovery of extracellular acid-base via the removal of extracellular pCO(2) and lactate after emersion was significantly retarded by exposure to both elevated temperature and pCO(2). If elevated environmental pCO(2) and temperature lead to slower recovery after emersion, then some predominantly subtidal species that also inhabit the low to mid shore, such as N. puber, may have a reduced physiological capacity to retain their presence in the low intertidal zone, ultimately affecting their bathymetric range of distribution, as well as the structure and diversity of intertidal assemblages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification may negatively affect calcifying plankton, opening ecological space for non-calcifying species. Recently, a study of climate-forcing of jellyfish reported the first analysis suggesting that there were more jellyfish (generally considered a noncalcifying group) when conditions were more acidic (lower pH) from one area within the North Sea. We examine this suggestion for a number of areas in the North Sea and beyond in the Northeast Atlantic using coelenterate records from the Continuous Plankton Recorder and pH data from the International Council for the Exploration of the Sea for the period 1946-2003. We could find no significant relationships between jellyfish abundance and acidic conditions in any of the regions investigated. We conclude that the role of pH in structuring zooplankton communities in the North Sea and further afield at present is tenuous.