13 resultados para Winter sports

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitat selection processes in highly migratory animals such as sharks and whales are important to understand because they influence patterns of distribution, availability and therefore catch rates. However, spatial strategies remain poorly understood over seasonal scales in most species, including, most notably, the plankton-feeding basking shark Cetorhinus maximus. It was proposed nearly 50 yr ago that this globally distributed species migrates from coastal summer-feeding areas of the northeast Atlantic to hibernate during winter in deep water on the bottom of continental-shelf slopes. This view has perpetuated in the literature even though the 'hibernation theory' has not been tested directly. We have now tracked basking sharks for the first time over seasonal scales (1.7 to 6.5 mo) using 'pop-up' satellite archival transmitters. We show that they do not hibernate during winter but instead undertake extensive horizontal (up to 3400 km) and vertical (> 750 m depth) movements to utilise productive continental-shelf and shelf-edge habitats during summer, autumn and winter. They travel long distances (390 to 460 km) to locate temporally discrete productivity 'hotspots' at shelf-break fronts, but at no time were prolonged movements into open-ocean regions away from shelf waters observed. Basking sharks have a very broad vertical diving range and can dive beyond the known range of planktivorous whales. Our study suggests this species can exploit shelf and slope-associated zooplankton communities in mesopelagic (200 to 1000 m) as well as epipelagic habitat (0 to 200 m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polar Oceans are natural CO2 sinks because of the enhanced solubility of CO2 in cold water. The Arctic Ocean is at additional risk of accelerated ocean acidification (OA) because of freshwater inputs from sea ice and rivers, which influence the carbonate system. Winter conditions in the Arctic are of interest because of both cold temperatures and limited CO2 venting to the atmosphere when sea ice is present. Earlier OA experiments on Arctic microbial communities conducted in the absence of ice cover, hinted at shifts in taxa dominance and diversity under lowered pH. The Catlin Arctic Survey provided an opportunity to conduct in situ, under-ice, OA experiments during late Arctic winter. Seawater was collected from under the sea ice off Ellef Ringnes Island, and communities were exposed to three CO2 levels for 6 days. Phylogenetic diversity was greater in the attached fraction compared to the free-living fraction in situ, in the controls and in the treatments. The dominant taxa in all cases were Gammaproteobacteria but acidification had little effect compared to the effects of containment. Phylogenetic net relatedness indices suggested that acidification may have decreased the diversity within some bacterial orders, but overall there was no clear trend. Within the experimental communities, alkalinity best explained the variance among samples and replicates, suggesting subtle changes in the carbonate system need to be considered in such experiments. We conclude that under ice communities have the capacity to respond either by selection or phenotypic plasticity to heightened CO2 levels over the short term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichodesmium, a colonial cyanobacterium typically associated with tropical waters, was observed between January and April 2014 in the western English Channel. Sequencing of the heterocyst differentiation (hetR) and 16S rRNA genes placed this community within the Clade IV Trichodesmium, an understudied clade previously found only in low numbers in warmer waters. Nitrogen fixation was not detected although measurable rates of nitrate uptake and carbon fixation were observed. Trichodesmium RuBisCO transcript abundance relative to gene abundance suggests the potential for viable and potentially active Trichodesmium carbon fixation. Observations of Trichodesmium when coupled with a numerical advection model indicate that Trichodesmium communities can remain viable for >3.5 months at temperatures lower than previously expected. The results suggest that Clade IV Trichodesmium occupies a different niche to other Trichodesmium species, and is a cold- or low-light-adapted variant.