20 resultados para Wildlife Conservation|Ecology|Conservation

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

50.00% 50.00%

Publicador:

Resumo:

After the collective failure to achieve the Convention on Biological Diversity's (CBD's) 2010 target to substantially reduce biodiversity losses, the CBD adopted a plan composed of five strategic goals and 20 “SMART” (Specific, Measurable, Ambitious, Realistic, and Time-bound) targets, to be achieved by 2020. Here, an interdisciplinary group of scientists from DIVERSITAS – an international program that focuses on biodiversity science – evaluates these targets and considers the implications of an ecosystem-services-based approach for their implementation. We describe the functional differences between the targets corresponding to distinct strategic goals and identify the interdependency between targets. We then discuss the implications for supporting research and target indicators, and make several specific suggestions for target implementation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

1.Identifying priority areas for marine vertebrate conservation is complex because species of conservation concern are highly mobile, inhabit dynamic habitats and are difficult to monitor. 2.Many marine vertebrates are known to associate with oceanographic fronts – physical interfaces at the transition between water masses – for foraging and migration, making them important candidate sites for conservation. Here, we review associations between marine vertebrates and fronts and how they vary with scale, regional oceanography and foraging ecology. 3.Accessibility, spatiotemporal predictability and relative productivity of front-associated foraging habitats are key aspects of their ecological importance. Predictable mesoscale (10s–100s km) regions of persistent frontal activity (‘frontal zones’) are particularly significant. 4.Frontal zones are hotspots of overlap between critical habitat and spatially explicit anthropogenic threats, such as the concentration of fisheries activity. As such, they represent tractable conservation units, in which to target measures for threat mitigation. 5.Front mapping via Earth observation (EO) remote sensing facilitates identification and monitoring of these hotspots of vulnerability. Seasonal or climatological products can locate biophysical hotspots, while near-real-time front mapping augments the suite of tools supporting spatially dynamic ocean management. 6.Synthesis and applications. Frontal zones are ecologically important for mobile marine vertebrates. We surmise that relative accessibility, predictability and productivity are key biophysical characteristics of ecologically significant frontal zones in contrasting oceanographic regions. Persistent frontal zones are potential priority conservation areas for multiple marine vertebrate taxa and are easily identifiable through front mapping via EO remote sensing. These insights are useful for marine spatial planning and marine biodiversity conservation, both within Exclusive Economic Zones and in the open oceans.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Increasing anthropogenic pressure in the offshore marine environment highlights the need for improved management and conservation of offshore ecosystems. This study scrutinises the applicability of a discrete choice experiment to value the expected benefits arising from the conservation of an offshore sandbank in UK waters. The valuation scenario refers to the UK part of the Dogger Bank, in the southern North Sea, and is based on real-world management options for fisheries, wind farms and marine protection currently under discussion for the site. It is assessed to what extent the general public perceive and value conservation benefits arising from an offshore marine protected area. The survey reveals support for marine conservation measures despite the general public’s limited prior knowledge of current marine planning. Results further show significant values for an increase in species diversity, the protection of certain charismatic species and a restriction in the spread of invasive species across the site. Implications for policy and management with respect to commercial fishing, wind farm construction and nature conservation are discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The ascidian Corella eumyota, originally from the Southern Hemisphere, was first reported in the Northern Hemisphere in Brittany, France, in 2002. Since then, it has been recorded in Spain, Ireland, the south coast of England and South Wales. Most European records to date have been from artificial habitats such as marinas. In Plymouth, England, C. eumyota was first found in two marinas in 2005 but individuals were soon also detected in small numbers on nearby shores. Shore surveys in March and August of 2008 indicated that C. eumyota has established reproductive populations on natural and semi-natural shores of Plymouth Sound and the adjacent coastline, largely restricted to relatively sheltered sites in the lower reaches of estuaries. At these sites it is generally the most abundant non-colonial ascidian. The species clearly has the capacity to become a significant component of the biota of sheltered shores in the Northern Hemisphere.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Statutory monitoring of the fauna of the ‘mudflats and sandflats not covered by seawater at low tide’ biotope complex on St Martin’s Flats, a part of the Isles of Scilly Complex Special Area of Conservation, was undertaken in 2000, 2004 and 2009. The targets set by Natural England for “characteristic biotopes” were that “composite species, abundance and diversity should not deviate significantly from an established baseline, subject to natural change”. The three specified biotopes could not be distinguished, and instead three assemblages were subjectively defined based on sediment surface features. There were statistically significant natural changes in diversity and species composition between years, especially in the association initially characterized by the razor-clam Ensis, and possible reasons for this are discussed. It is suggested that setting fixed local limits on natural variability is almost always impractical. Two possible approaches to distinguishing between natural and anthropogenic changes are suggested; a change in ecological condition as indicated by AMBI scores, and a significant change in average taxonomic distinctness (Δ+) compared with expectation. The determination of species biomasses as well as abundances might also open more possibilities for assessment. The practice of setting objectives for a marine SAC feature that include the range and number of biotopes cannot be supported, in view the difficulty in ascribing assemblages to recognised biotopes. A more realistic definition of species assemblages might best be gained from examination of the species that consistently make a substantial contribution to the Bray Curtis similarity among samples collected from specific sites.