12 resultados para Water and architecture
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Maritime transport and shipping are impacted negatively by biofouling, which can result in increased fuel consumption. Thus, costs for fouling reduction can be considered an investment to reduce fuel consumption. Anti-fouling measures also reduce the rate of introduction of non-indigenous species (NIS). Further mitigation measures to reduce the transport of NIS within ballast water and sediments impose additional costs. The estimated operational cost of NIS mitigation measures may represent between 1.6% and 4% of the annual operational cost for a ship operating on European seas, with the higher proportional costs in small ships. However, fouling by NIS may affect fuel consumption more than fouling by native species due to differences in species’ life-history traits and their resistance to antifouling coatings and pollution. Therefore, it is possible that the cost of NIS mitigation measures could be smaller than the cost from higher fuel consumption arising from fouling by NIS.
Resumo:
Changes in the ecosystem of the North Sea may occur as pronounced inter-annual and step-wise shifts as well as gradual trends. Marked inter-annual shifts have occurred at least twice in the last two decades, the late 1980s and the late 1990s, that appear to reflect an increased inflow of oceanic water and species. Numerical modelling has demonstrated a link between altered rates of inflow of oceanic water into the northern North Sea and a regime shift after 1988. In 1989 and 1997 oceanic species not normally found in the North Sea were observed there, suggesting pulses of oceanic water had entered the basin and triggered the subsequent ecosystem change. The oceanic water has origins mainly west of Britain in the Rockall Trough, where the long-term mean volume transport is around 3.7Sv northwards (1Sv=10 super(6)m super(3)s super(1)), but in early 1989 and early 1998 was observed to be more than twice the mean value, reaching over 7Sv. These periods of high transport coinciding with the inferred pulses of oceanic water into the North Sea suggest a connection through the continental shelf edge current. Copyright 2001 International Council for the Exploration of the Sea
Resumo:
The Channel Catchments Cluster (3C) aims to capitalise on outputs from some of the recent projects funded through the INTERREG IVa France (Channel) England programme. The river catchment basins draining into the Channel region drain an area of 137,000km2 and support a human population of over 19M. Throughout history, these catchments, rivers and estuaries have been centres of habitation, developed through commerce and industry, providing transport links to hinterland areas. These catchments also provide drinking water and food through provision of agriculture, fisheries and aquaculture. In addition, many parts of the region are also economically important now for the tourism and leisure industries. Consequently, there is a need to manage the balance of these many and varied human activities within the catchments, rivers, estuaries and marine areas to ensure that they are maintained or restored to good environmental condition . This document highlights some of the recent work carried out by projects within the INTERREG IVa programme that provide tools and techniques to assist in the achievement of these goals.