11 resultados para Water Pollution.
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Benthic Community Structure In Relation To An Instantaneous Discharge Of Waste-Water From A Tin Mine
Resumo:
The Channel Catchments Cluster (3C) aims to capitalise on outputs from some of the recent projects funded through the INTERREG IVa France (Channel) England programme. The river catchment basins draining into the Channel region drain an area of 137,000km2 and support a human population of over 19M. Throughout history, these catchments, rivers and estuaries have been centres of habitation, developed through commerce and industry, providing transport links to hinterland areas. These catchments also provide drinking water and food through provision of agriculture, fisheries and aquaculture. In addition, many parts of the region are also economically important now for the tourism and leisure industries. Consequently, there is a need to manage the balance of these many and varied human activities within the catchments, rivers, estuaries and marine areas to ensure that they are maintained or restored to good environmental condition . This document highlights some of the recent work carried out by projects within the INTERREG IVa programme that provide tools and techniques to assist in the achievement of these goals.
Resumo:
Following recognition of effects in the 1980s, tributyltin (TBT) has been monitored at sites in the English Channel to evaluate the prognosis for biota – spanning the introduction of restrictions on TBT use on small boats and the recent phase-out on the global fleet. We describe how persistence and impact of TBT in clams Scrobicularia plana has changed during this period in Southampton Water and Poole Harbour. TBT contamination (and loss) in water, sediment and clams reflects the abundance and type of vessel activity: half-times in sediment (up to 8y in Poole, 33y in Southampton) are longest near commercial shipping. Recovery of clam populations – slowest in TBT-contaminated deposits – provides a useful biological measure of legislative efficacy in estuaries. On rocky shores, recovery from imposex in Nucella lapillus is evident at many sites but, near ports, is prolonged by shipping impacts, including sediment legacy, for example, in the Fal.
Resumo:
Maritime transport and shipping are impacted negatively by biofouling, which can result in increased fuel consumption. Thus, costs for fouling reduction can be considered an investment to reduce fuel consumption. Anti-fouling measures also reduce the rate of introduction of non-indigenous species (NIS). Further mitigation measures to reduce the transport of NIS within ballast water and sediments impose additional costs. The estimated operational cost of NIS mitigation measures may represent between 1.6% and 4% of the annual operational cost for a ship operating on European seas, with the higher proportional costs in small ships. However, fouling by NIS may affect fuel consumption more than fouling by native species due to differences in species’ life-history traits and their resistance to antifouling coatings and pollution. Therefore, it is possible that the cost of NIS mitigation measures could be smaller than the cost from higher fuel consumption arising from fouling by NIS.