4 resultados para WSIS review process
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Human activities within the marine environment give rise to a number of pressures on seabed habitats. Improved understanding of the sensitivity of subtidal sedimentary habitats is required to underpin the management advice provided for Marine Protected Areas, as well as supporting other UK marine monitoring and assessment work. The sensitivity of marine sedimentary habitats to a range of pressures induced by human activities has previously been systematically assessed using approaches based on expert judgement for Defra Project MB0102 (Tillin et al. 2010). This previous work assessed sensitivity at the level of the broadscale habitat and therefore the scores were typically expressed as a range due to underlying variation in the sensitivity of the constituent biotopes. The objective of this project was to reduce the uncertainty around identifying the sensitivity of selected subtidal sedimentary habitats by assessing sensitivity, at a finer scale and incorporating information on the biological assemblage, for 33 Level 5 circalittoral and offshore biotopes taken from the Marine Habitat Classification of Britain and Ireland (Connor et al. 2004). Two Level 6 sub-biotopes were also included in this project as these contain distinctive characterising species that differentiate them from the Level 5 parent biotope. Littoral, infralittoral, reduced and variable salinity sedimentary habitats were excluded from this project as the scope was set for assessment of circalittoral and offshore sedimentary communities. This project consisted of three Phases. • Phase 1 - define ecological groups based on similarities in the sensitivity of characterising species from the Level 5 and two Level 6 biotopes described above. • Phase 2 - produce a literature review of information on the resilience and resistance of characterising species of the ecological groups to pressures associated with activities in the marine environment. • Phase 3 - to produce sensitivity assessment ‘proformas’ based on the findings of Phase 2 for each ecological group. This report outlines results of Phase 2. The Tillin et al., (2010) sensitivity assessment methodology was modified to use the best available scientific evidence that could be collated within the project timescale. An extensive literature review was compiled, for peer reviewed and grey literature, to examine current understanding about the effects of pressures from human activities on circalittoral and offshore sedimentary communities in UK continental shelf waters, together with information on factors that contribute to resilience (recovery) of marine species. This review formed the basis of an assessment of the sensitivity of the 16 ecological groups identified in Phase 1 of the project (Tillin & Tyler-Walters 2014). As a result: • the state of knowledge on the effects of each pressure on circalittoral and offshore benthos was reviewed; • the resistance, resilience and, hence, sensitivity of sixteen ecological groups, representing 96 characteristic species, were assessed for eight separate pressures; • each assessment was accompanied by a detailed review of the relevant evidence; Assessing the sensitivity of subtidal sedimentary habitats to pressures associated with human activities • knowledge gaps and sources of uncertainty were identified for each group; • each assessment was accompanied by an assessment of the quality of the evidence, its applicability to the assessment and the degree of concordance (agreement) between the evidence, to highlight sources of uncertainty as an assessment of the overall confidence in the sensitivity assessment, and finally • limitations in the methodology and the application of sensitivity assessments were outlined. This process demonstrated that the ecological groups identified in Phase 1 (Tillin & Tyler-Walters 2014) were viable groups for sensitivity assessment, and could be used to represent the 33 circalittoral and offshore sediments biotopes identified at the beginning of the project. The results of the sensitivity assessments show: • the majority of species and hence ecological groups in sedimentary habitats are sensitive to physical change, especially loss of habitat and sediment extraction, and change in sediment type; • most sedimentary species are sensitive to physical damage, e.g. abrasion and penetration, although deep burrowing species (e.g. the Dublin Bay prawn - Nephrops norvegicus and the sea cucumber - Neopentadactyla mixta) are able to avoid damaging effects to varying degrees, depending on the depth of penetration and time of year; • changes in hydrography (wave climate, tidal streams and currents) can significantly affect sedimentary communities, depending on whether they are dominated by deposit, infaunal feeders or suspension feeders, and dependant on the nature of the sediment, which is itself modified by hydrography and depth; • sedentary species and ecological groups that dominate the top-layer of the sediment (either shallow burrowing or epifaunal) remain the most sensitive to physical damage; • mobile species (e.g. interstitial and burrowing amphipods, and perhaps cumaceans) are the least sensitive to physical change or damage, and hydrological change as they are already adapted to unstable, mobile substrata; • sensitivity to changes in organic enrichment and hence oxygen levels, is variable between species and ecological groups, depending on the exact habitat preferences of the species in question, although most species have at least a medium sensitivity to acute deoxygenation; • there is considerable evidence on the effects of bottom-contact fishing practices and aggregate dredging on sedimentary communities, although not all evidence is directly applicable to every ecological group; • there is lack of detailed information on the physiological tolerances (e.g. to oxygenation, salinity, and temperature), habitat preferences, life history and population dynamics of many species, so that inferences has been made from related species, families, or even the same phylum; • there was inadequate evidence to assess the effects of non-indigenous species on most ecological groups, and Assessing the sensitivity of subtidal sedimentary habitats to pressures associated with human activities • there was inadequate evidence to assess the effects of electromagnetic fields and litter on any ecological group. The resultant report provides an up-to-date review of current knowledge about the effects of pressures resulting from human activities of circalittoral and offshore sedimentary communities. It provides an evidence base to facilitate and support the provision of management advice for Marine Protected Areas, development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. However, such a review will require at least annual updates to take advantage of new evidence and new research as it becomes available. Also further work is required to test how ecological group assessments are best combined in practice to advise on the sensitivity of a range of sedimentary biotopes, including the 33 that were originally examined.
Resumo:
1. Marine legislation, the key means by which the conservation of marine biodiversity is achieved, has been developing since the 1960s. In recent decades, an increasing focus on ‘holistic’ policy development is evident, compared with earlier ‘piecemeal’ sectoral approaches. Important marine legislative tools being used in the United Kingdom, and internationally, include the designation of marine protected areas and the Marine Strategy Framework Directive (MSFD) with its aim of meeting ‘Good Environmental Status’ (GES) for European seas by 2020. 2. There is growing evidence of climate change impacts on marine biodiversity, which may compromise the effectiveness of any legislation intended to promote sustainable marine resource management. 3. A review of key marine biodiversity legislation relevant to the UK shows climate change was not considered in the drafting of much early legislation. Despite the huge increase in knowledge of climate change impacts in recent decades, legislation is still limited in how it takes these impacts into account. There is scope, however, to account for climate change in implementing much of the legislation through (a) existing references to environmental variability; (b) review cycles; and (c) secondary legislation and complementary policy development. 4. For legislation relating to marine protected areas (e.g. the EC Habitats and Birds Directives), climate change has generally not been considered in the site-designation process, or for ongoing management, with the exception of the Marine (Scotland) Act. Given that changing environmental conditions (e.g. rising temperatures and ocean acidification) directly affect the habitats and species that sites are designated for, how this legislation is used to protect marine biodiversity in a changing climate requires further consideration. 5. Accounting for climate change impacts on marine biodiversity in the development and implementation of legislation is vital to enable timely, adaptive management responses. Marine modelling can play an important role in informing management decisions.
Resumo:
Over the years, many reviews of different aspects of diatom biology, ecology and evolution have appeared. Since 1993 many molecular trees have been produced to infer diatom phylogeny. In 2004, Medlin & Kaczmarska revised the systematics of the diatoms based on more than 20 years of consistent recovery of two major clades of diatoms that did not correspond to a traditional concept of centrics and pennates and established three classes of diatoms: Clade 1 = Coscinodiscophyceae (radial centrics) and Clade 2 = Mediophyceae (polar centrics + radial Thalassiosirales) and Bacillariophyceae (pennates). However, under certain analytical conditions, an alternative view of diatom evolution, a grades of clades, has been recovered that suggests a gradual evolution from centric to pennate symmetry. These two schemes of diatom evolution are evaluated in terms of whether or not the criteria advocated by Medlin & Kaczmarska that should be met to recover monophyletic classes have been used. The monophyly of the three diatom classes can only be achieved if (1) a secondary structure of the small subunit (SSU) rRNA gene was used to construct the alignment and not an alignment based on primary structure and (2) multiple outgroups were used. These requirements have not been met in each study of diatom evolution; hence, the grade of clades, which is useful in reconstructing the sequence of evolution, is not useful for accepting the new classification of the diatoms. Evidence for how these two factors affect the recovery of the three monophyletic classes is reviewed here. The three classes have been defined by clear morphological differences primarily based on gametangia and auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. New evidence supporting the three clades is reviewed. Other features of the cell are examined to determine whether they can also be used to support the monophyly of the three classes.
Resumo:
Over the years, many reviews of different aspects of diatom biology, ecology and evolution have appeared. Since 1993 many molecular trees have been produced to infer diatom phylogeny. In 2004, Medlin & Kaczmarska revised the systematics of the diatoms based on more than 20 years of consistent recovery of two major clades of diatoms that did not correspond to a traditional concept of centrics and pennates and established three classes of diatoms: Clade 1 = Coscinodiscophyceae (radial centrics) and Clade 2 = Mediophyceae (polar centrics + radial Thalassiosirales) and Bacillariophyceae (pennates). However, under certain analytical conditions, an alternative view of diatom evolution, a grades of clades, has been recovered that suggests a gradual evolution from centric to pennate symmetry. These two schemes of diatom evolution are evaluated in terms of whether or not the criteria advocated by Medlin & Kaczmarska that should be met to recover monophyletic classes have been used. The monophyly of the three diatom classes can only be achieved if (1) a secondary structure of the small subunit (SSU) rRNA gene was used to construct the alignment and not an alignment based on primary structure and (2) multiple outgroups were used. These requirements have not been met in each study of diatom evolution; hence, the grade of clades, which is useful in reconstructing the sequence of evolution, is not useful for accepting the new classification of the diatoms. Evidence for how these two factors affect the recovery of the three monophyletic classes is reviewed here. The three classes have been defined by clear morphological differences primarily based on gametangia and auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. New evidence supporting the three clades is reviewed. Other features of the cell are examined to determine whether they can also be used to support the monophyly of the three classes.