8 resultados para Vibration (Marine engineering)

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An inexpensive Marine Environmental Recorder is described. The instrument system is small, lightweight and of low-power consumption. It is flexible, simple to operate and economical. It can be used remotely in a moored, buoyed or towed instrument system, recording measurements continuously for up to 24 h, or intermittently for 1 min every hour, for a period of up to 60 d. It has been used extensively in the Continuous Plankton Recorder and the Undulating Oceanographic Recorder to measure temperature, depth and occasionally chlorophyll and radiant energy; as a temperature recorder, it has a resolution of 0.1 Co, an uncertainty of measurement of ±0.1 Co and a stability of calibration within ±0.1 Co over a period of several months. With optional additional sensors for pitch, roll, vibration, acceleration and water-flow, the instrument system has been used to measure the performance of underwater towed vehicles and plankton samplers. The Marine Environmental Recorder is being incorporated into an instrument system in a data buoy, for automatically monitoring the marine environment in estuaries around the British Isles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unprecedented basin-scale ecological changes are occurring in our seas. As temperature and carbon dioxide concentrations increase, the extent of sea ice is decreasing, stratification and nutrient regimes are changing and pH is decreasing. These unparalleled changes present new challenges for managing our seas, as we are only just beginning to understand the ecological manifestations of these climate alterations. The Marine Strategy Framework Directive requires all European Member States to achieve good environmental status (GES) in their seas by 2020; this means management towards GES will take place against a background of climate-driven macroecological change. Each Member State must set environmental targets to achieve GES; however, in order to do so, an understanding of large-scale ecological change in the marine ecosystem is necessary. Much of our knowledge of macroecological change in the North Atlantic is a result of research using data gathered by the Continuous Plankton Recorder (CPR) survey, a near-surface plankton monitoring programme that has been sampling in the North Atlantic since 1931. CPR data indicate that North Atlantic and North Sea plankton dynamics are responding to both climate and human-induced changes, presenting challenges to the development of pelagic targets for achievement of GES in European Seas. Thus, the continuation of long-term ecological time series such as the CPR survey is crucial for informing and supporting the sustainable management of European seas through policy mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal defences are proliferating in response to climate change, leading to the creation of more vertical substrata. Efforts are being made to mitigate their impacts and create novel habitats to promote biodiversity. Little is known about the effect of aspect (i.e. north–south directionality) and inclination on intertidal biodiversity in artificial habitats. Artificial and natural habitats were compared to assess the role of aspect and substratum inclination in determining patterns of biodiversity at two tidal heights (high and mid). We also compared grazing activity between north- and south-facing surfaces in natural habitats to examine the potential for differential grazing pressure to affect community structure and functioning. Results were variable but some clear patterns emerged. Inclination had no effect on biodiversity or abundance. There was a general trend towards greater taxon richness and abundance on north-facing than south-facing substrata in natural and artificial habitats. On natural shores, the abundance and grazing activity of ‘southern’ limpets (i.e. Patella depressa) was greater on south-facing than north-facing substrata, with possible implications for further range-expansion. These results highlight the importance of incorporating shaded habitats in the construction of artificial habitats. These habitats may represent an important refuge from grazing pressure and thermal and desiccation stress in a warming climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal defences are proliferating in response to climate change, leading to the creation of more vertical substrata. Efforts are being made to mitigate their impacts and create novel habitats to promote biodiversity. Little is known about the effect of aspect (i.e. north–south directionality) and inclination on intertidal biodiversity in artificial habitats. Artificial and natural habitats were compared to assess the role of aspect and substratum inclination in determining patterns of biodiversity at two tidal heights (high and mid). We also compared grazing activity between north- and south-facing surfaces in natural habitats to examine the potential for differential grazing pressure to affect community structure and functioning. Results were variable but some clear patterns emerged. Inclination had no effect on biodiversity or abundance. There was a general trend towards greater taxon richness and abundance on north-facing than south-facing substrata in natural and artificial habitats. On natural shores, the abundance and grazing activity of ‘southern’ limpets (i.e. Patella depressa) was greater on south-facing than north-facing substrata, with possible implications for further range-expansion. These results highlight the importance of incorporating shaded habitats in the construction of artificial habitats. These habitats may represent an important refuge from grazing pressure and thermal and desiccation stress in a warming climate.