4 resultados para Via Mangue

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pronounced changes in fauna, extending from the English Channel in the south to the Barents Sea in the north-east and off Greenland in the north-west, have occurred in the late 1920s, the late 1960s and again in the late 1990s. We attribute these events to exchanges of subarctic and subtropical water masses in the north-eastern North Atlantic Ocean, associated with changes in the strength and extent of the subpolar gyre. These exchanges lead to variations in the influence exerted by the subarctic or Lusitanian biomes on the intermediate faunistic zone in the north-eastern Atlantic. This strong and persistent bottom-up bio-physical link is demonstrated using a numerical ocean general circulation model and data on four trophically connected levels in the food chain – phytoplankton, zooplankton, blue whiting, and pilot whales. The plankton data give a unique basin-scale depiction of these changes, and a long pilot whale record from the Faroe Islands offers an exceptional temporal perspective over three centuries. Recent advances in simulating the dynamics of the subpolar gyre suggests a potential for predicting the distribution of the main faunistic zones in the north-eastern Atlantic a few years into the future, which might facilitate a more rational management of the commercially important fisheries in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zooplankton play a key role in climate change through the transfer of large quantities of CO sub(2) to the deep ocean by a process known as the biological pump. Plankton composition is crucial as associated mineral material facilitates sinking of carbon rich debris and some taxa package faecal and detrital material. Ocean acidification may impact calcareous groups. Zooplankton have also been shown to be highly sensitive indicators of environmental change. Results will be presented to show that ocean temperature, circulation and planktonic ecosystems (using data from the Continuous Plankton Recorder, CPR survey) in the North Atlantic are changing rapidly in concert and that there is evidence to suggest that the changes are an ocean wide response to global warming with potential feedback effects. Given the importance of the oceans to the carbon cycle, even a minor change in the flux of carbon to the deep ocean would have a big impact increasing growth of atmospheric CO sub(2). We have virtually no understanding of the spatial and temporal variability in the efficiency of the biological pump for most of the world's ocean. Establishing new plankton monitoring programmes backed up by appropriate research to help understand processes is needed to address this gap in knowledge. There is little doubt within a global change context and the future of mankind that a potential acceleration in the growth of atmospheric carbon due to a reduction in the efficiency of the biological pump is a key issue for future research in zooplankton ecology.