15 resultados para Vegetation succession

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to determine the role of light on the succession of the phytoplankton community during the spring bloom in the northwestern Mediterranean Sea. To this end, three successive Lagrangian experiments were carried out between March and April 2003. The three experiments correspond to distinct phases of the bloom development (pre-bloom, bloom peak and post-bloom, respectively) and therefore to different trophic conditions. Phytoplankton (sampled on a daily scale) was grouped in size-based classes (pico and nano+micro) each of them were characterised in terms of chemotaxonomic composition, primary production and photophysiological properties. The phytoplankton community evolved with time changing in both size-class dominance and specie/group dominance within each size class. The bloom peak was characterised by highly dynamic condition (i.e. vertical mixing) and by the dominance of both small (pico) and large (nano and micro) diatoms, as a result of their capacity to photoacclimate to changing light regimes (â˜physiological plasticityâ). Concluding, we suggest that the physiological adaptation to light is the main factor driving the succession of the phytoplankton community during the first phases of the bloom (until the onset of thermal stratification) in the western Mediterranean Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the leading ecological and evolutionary characteristics of populations are governed by their effective population size, which in turn is strongly influenced by the minimum census size. The succession of minima of increasing rank R in time is described by the expected value of the next minimum ÏR and by the expected time TR elapsing before it occurs. The relationships of ÏR and TR with R together determine the minimal population expected to be encountered within a given period of time. These relationships depend on the dynamic model for species abundance. The four main types of model investigated here have characteristically different successions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used a numerical model to investigate if and to what extent cellular photoprotective capacity accounts for succession and vertical distribution of marine phytoplankton species/groups. A model describing xanthophyll photoprotective activity in phytoplankton has been implemented in the European Regional Sea Ecosystem Model and applied at the station L4 in the Western English Channel. Primary producers were subdivided into three phytoplankton functional types defined in terms of their capacity to acclimate to different light-specific environments: low light (LL-type), high light (HL-type) and variable light (VL-type) adapted species. The LL-type is assumed to have low cellular level of xanthophyll-cycling pigments (PX) relative to the modelled photosynthetically active pigments (chlorophyll and fucoxanthin (FUCO) = PSP). The HL-type has high PX content relative to PSP while VL-type presents an intermediate PX to PSP ratio. Furthermore, the VL-type is capable of reversibly converting FUCO to PX and synthesizing new PX under high-light stress. In order to reproduce phytoplankton community succession with each of the three groups being dominant in different periods of the year, we had also to assume reduced grazing pressure on HL-adapted species. Model simulations realistically reproduce the observed seasonal patterns of pigments and nutrients highlighting the reasonability of the underpinning assumptions. Our model suggests that pigment-mediated photophysiology plays a primary role in determining the evolution of marine phytoplankton communities in the winter-spring period corresponding to the shoaling of the mixed layer and the increase of light intensity. Grazing selectivity however contributes to the phytoplankton community composition in summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activity causes ocean acidification (OA) though the dissolution of anthropogenically generated CO2 into seawater, and eutrophication through the addition of inorganic nutrients. Eutrophication increases the phytoplankton biomass that can be supported during a bloom, and the resultant uptake of dissolved inorganic carbon during photosynthesis increases water-column pH (bloom-induced basification). This increased pH can adversely affect plankton growth. With OA, basification commences at a lower pH. Using experimental analyses of the growth of three contrasting phytoplankton under different pH scenarios, coupled with mathematical models describing growth and death as functions of pH and nutrient status, we show how different conditions of pH modify the scope for competitive interactions between phytoplankton species. We then use the models previously configured against experimental data to explore how the commencement of bloom-induced basification at lower pH with OA, and operating against a background of changing patterns in nutrient loads, may modify phytoplankton growth and competition. We conclude that OA and changed nutrient supply into shelf seas with eutrophication or de-eutrophication (the latter owing to pollution control) has clear scope to alter phytoplankton succession, thus affecting future trophic dynamics and impacting both biogeochemical cycling and fisheries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipids are key constituents of marine phytoplankton, and some fatty acids (key constituents of lipids) are essential dietary components for secondary producers. However, in natural marine ecosystems the interactions of factors affecting seasonal phytoplankton lipid composition are still poorly understood. The aim of this study was to assess the roles of seasonal succession in phytoplankton community composition and nutrient concentrations, on the lipid composition of the phytoplankton community. Fatty acid and polar lipid composition in seston was measured in surface waters at the time series station L4, an inshore station in the Western English Channel, from January to December 2013. Redundancy analyses (RDA) were used to identify factors (abiotic and biotic) that explained the seasonal variability in phytoplankton lipids. RDA demonstrated that nutrients (namely nitrogen) explained the majority of variation in phytoplankton lipid composition, as well as a smaller explanatory contribution from changes in phytoplankton community composition. The physiological adaptations of the phytoplankton community to nutrient deplete conditions during the summer season when the water column was stratified, was further supported by changes in the polar lipid to phytoplankton biomass ratios (also modelled with RDA) and increases in the lipid to chlorophyll a ratios, which are both indicative of nutrient stress. However, the association of key fatty acid markers with phytoplankton groups e.g. 22:6 n-3 and dinoflagellate biomass (predominant in summer), meant there were no clear seasonal differences in the overall degree of fatty acid saturation, as might have been expected from typical nutrient stress on phytoplankton. Based on the use of polyunsaturated fatty acids (PUFA) as markers of â˜food qualityâ for grazers, our results suggest that in this environment high food quality is maintained throughout summer, due to seasonal succession towards flagellated phytoplankton species able to maintain PUFA synthesis under surface layer nutrient depletion.